Get comprehensive solutions to your questions with the help of IDNLearn.com's experts. Discover comprehensive answers to your questions from our community of experienced professionals.
Sagot :
To solve the given expression:
[tex]\[ 3^{17} \binom{17}{0} - 4 \cdot 3^{16} \binom{17}{1} + 4^2 \cdot 3^{15} \binom{17}{2} - 4^3 \cdot 3^{14} \binom{17}{3} + \ldots - 4^{17} \binom{17}{17} \][/tex]
we will proceed step-by-step.
1. Identify the General Form: The expression is a combination of powers of 3 and 4, and binomial coefficients [tex]\(\binom{17}{i}\)[/tex]. It alternates in sign and follows a pattern. The general term can be represented as:
[tex]\[ (-1)^i \cdot 4^i \cdot 3^{17-i} \cdot \binom{17}{i} \][/tex]
for [tex]\(i\)[/tex] ranging from 0 to 17.
2. Sum of the Series: The sum we want to calculate is:
[tex]\[ \sum_{i=0}^{17} (-1)^i \cdot 4^i \cdot 3^{17-i} \cdot \binom{17}{i} \][/tex]
3. Factor Out Common Terms:
Notice that [tex]\(3^{17}\)[/tex] is a common factor across all terms when factored correctly. We can factor it out:
[tex]\[ 3^{17} \sum_{i=0}^{17} \left( \frac{4}{3} \right)^i \cdot (-1)^i \cdot \binom{17}{i} \][/tex]
4. Simplify the Series:
We recognize that this sum is related to the binomial expansion of [tex]\( (1 + x)^n \)[/tex] for [tex]\( x = -\frac{4}{3} \)[/tex]:
[tex]\[ \sum_{i=0}^{n} \binom{n}{i} x^i = (1+x)^n \][/tex]
Here, [tex]\( x = -\frac{4}{3} \)[/tex] and [tex]\( n = 17 \)[/tex]:
[tex]\[ \sum_{i=0}^{17} \binom{17}{i} \left( -\frac{4}{3} \right)^i = \left( 1 - \frac{4}{3} \right)^{17} \][/tex]
5. Simplify the Exponent:
Simplify the term within the parentheses:
[tex]\[ 1 - \frac{4}{3} = -\frac{1}{3} \][/tex]
Raise this to the power of 17:
[tex]\[ \left( -\frac{1}{3} \right)^{17} = -\frac{1}{3^{17}} \][/tex]
6. Final Calculation:
Substitute this back into our factored expression:
[tex]\[ 3^{17} \sum_{i=0}^{17} \left( \frac{4}{3} \right)^i \cdot (-1)^i \cdot \binom{17}{i} = 3^{17} \cdot \left( -\frac{1}{3^{17}} \right) = 3^{17} \cdot -\frac{1}{3^{17}} = -1 \][/tex]
Thus, the result of the given series is:
[tex]\[ \boxed{-1} \][/tex]
[tex]\[ 3^{17} \binom{17}{0} - 4 \cdot 3^{16} \binom{17}{1} + 4^2 \cdot 3^{15} \binom{17}{2} - 4^3 \cdot 3^{14} \binom{17}{3} + \ldots - 4^{17} \binom{17}{17} \][/tex]
we will proceed step-by-step.
1. Identify the General Form: The expression is a combination of powers of 3 and 4, and binomial coefficients [tex]\(\binom{17}{i}\)[/tex]. It alternates in sign and follows a pattern. The general term can be represented as:
[tex]\[ (-1)^i \cdot 4^i \cdot 3^{17-i} \cdot \binom{17}{i} \][/tex]
for [tex]\(i\)[/tex] ranging from 0 to 17.
2. Sum of the Series: The sum we want to calculate is:
[tex]\[ \sum_{i=0}^{17} (-1)^i \cdot 4^i \cdot 3^{17-i} \cdot \binom{17}{i} \][/tex]
3. Factor Out Common Terms:
Notice that [tex]\(3^{17}\)[/tex] is a common factor across all terms when factored correctly. We can factor it out:
[tex]\[ 3^{17} \sum_{i=0}^{17} \left( \frac{4}{3} \right)^i \cdot (-1)^i \cdot \binom{17}{i} \][/tex]
4. Simplify the Series:
We recognize that this sum is related to the binomial expansion of [tex]\( (1 + x)^n \)[/tex] for [tex]\( x = -\frac{4}{3} \)[/tex]:
[tex]\[ \sum_{i=0}^{n} \binom{n}{i} x^i = (1+x)^n \][/tex]
Here, [tex]\( x = -\frac{4}{3} \)[/tex] and [tex]\( n = 17 \)[/tex]:
[tex]\[ \sum_{i=0}^{17} \binom{17}{i} \left( -\frac{4}{3} \right)^i = \left( 1 - \frac{4}{3} \right)^{17} \][/tex]
5. Simplify the Exponent:
Simplify the term within the parentheses:
[tex]\[ 1 - \frac{4}{3} = -\frac{1}{3} \][/tex]
Raise this to the power of 17:
[tex]\[ \left( -\frac{1}{3} \right)^{17} = -\frac{1}{3^{17}} \][/tex]
6. Final Calculation:
Substitute this back into our factored expression:
[tex]\[ 3^{17} \sum_{i=0}^{17} \left( \frac{4}{3} \right)^i \cdot (-1)^i \cdot \binom{17}{i} = 3^{17} \cdot \left( -\frac{1}{3^{17}} \right) = 3^{17} \cdot -\frac{1}{3^{17}} = -1 \][/tex]
Thus, the result of the given series is:
[tex]\[ \boxed{-1} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.