Explore IDNLearn.com to discover insightful answers from experts and enthusiasts alike. Join our platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
To find the particular solution of the given differential equation with initial conditions, follow these steps:
### Given Problem
The differential equation is:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \][/tex]
### Initial Conditions
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y(0) = 0 \][/tex]
[tex]\[ \frac{d y}{d x}\bigg|_{x=0} = -\frac{4}{3} \][/tex]
### Step-by-Step Solution
1. Formulate the Homogeneous Equation:
First, solve the corresponding homogeneous equation:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 0 \][/tex]
2. Solve for Characteristic Equation:
Convert the homogeneous differential equation into its characteristic equation by assuming a solution of the form [tex]\( y = e^{rx} \)[/tex]:
[tex]\[ 9r^2 - 12r + 4 = 0 \][/tex]
3. Solve the Quadratic Equation:
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{12 \pm \sqrt{144 - 144}}{18} = \frac{12 \pm 0}{18} = \frac{2}{3} \][/tex]
Since both roots are [tex]\( \frac{2}{3} \)[/tex], the general solution to the homogeneous equation is:
[tex]\[ y_h(x) = (C_1 + C_2 x) e^{2x/3} \][/tex]
4. Formulate the Particular Solution:
Find a particular solution [tex]\( y_p(x) \)[/tex] to the non-homogeneous equation. Assume a particular solution of the form:
[tex]\[ y_p(x) = Ax + B \][/tex]
Substitute [tex]\( y_p \)[/tex] and its derivatives into the original differential equation:
[tex]\[ 9(0) - 12(A) + 4(Ax + B) = 3x - 1 \implies 4Ax + 4B - 12A = 3x - 1 \][/tex]
Comparing coefficients:
[tex]\[ 4A = 3 \quad \Rightarrow \quad A = \frac{3}{4} \][/tex]
[tex]\[ 4B - 12A = -1 \quad \Rightarrow \quad B = 2 \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = \frac{3}{4}x + 2 \][/tex]
5. Combine Solutions:
The general solution of the differential equation is:
[tex]\[ y(x) = y_h(x) + y_p(x) = (C_1 + C_2 x) e^{2x/3} + \frac{3}{4}x + 2 \][/tex]
6. Apply Initial Conditions:
Use the initial conditions to solve for [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]:
[tex]\[ y(0) = 0 \quad \Rightarrow \quad C_1 e^0 + 2 = 0 \quad \Rightarrow \quad C_1 + 2 = 0 \quad \Rightarrow \quad C_1 = -2 \][/tex]
The derivative of [tex]\( y(x) \)[/tex] is:
[tex]\[ y'(x) = \left(C_2 e^{2x/3} + \frac{2}{3}(C_1 + C_2 x)e^{2x/3}\right) + \frac{3}{4} \][/tex]
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y'(0) = C_2 + \frac{2}{3}C_1 + \frac{3}{4} = -\frac{4}{3} \][/tex]
Substituting [tex]\( C_1 = -2 \)[/tex]:
[tex]\[ C_2 + \frac{2}{3}(-2) + \frac{3}{4} = -\frac{4}{3} \][/tex]
[tex]\[ C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{1}{12} = -\frac{4}{3} \quad \Rightarrow \quad C_2 = -\frac{4}{3} + \frac{1}{12} \][/tex]
[tex]\[ C_2 = -\frac{16}{12} + \frac{1}{12} = -\frac{15}{12} = -1.25 \][/tex]
7. Particular Solution:
Thus, the particular solution of the differential equation is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
So, the particular solution of the differential equation [tex]\( 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \)[/tex] given the initial conditions is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
### Given Problem
The differential equation is:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \][/tex]
### Initial Conditions
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y(0) = 0 \][/tex]
[tex]\[ \frac{d y}{d x}\bigg|_{x=0} = -\frac{4}{3} \][/tex]
### Step-by-Step Solution
1. Formulate the Homogeneous Equation:
First, solve the corresponding homogeneous equation:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 0 \][/tex]
2. Solve for Characteristic Equation:
Convert the homogeneous differential equation into its characteristic equation by assuming a solution of the form [tex]\( y = e^{rx} \)[/tex]:
[tex]\[ 9r^2 - 12r + 4 = 0 \][/tex]
3. Solve the Quadratic Equation:
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{12 \pm \sqrt{144 - 144}}{18} = \frac{12 \pm 0}{18} = \frac{2}{3} \][/tex]
Since both roots are [tex]\( \frac{2}{3} \)[/tex], the general solution to the homogeneous equation is:
[tex]\[ y_h(x) = (C_1 + C_2 x) e^{2x/3} \][/tex]
4. Formulate the Particular Solution:
Find a particular solution [tex]\( y_p(x) \)[/tex] to the non-homogeneous equation. Assume a particular solution of the form:
[tex]\[ y_p(x) = Ax + B \][/tex]
Substitute [tex]\( y_p \)[/tex] and its derivatives into the original differential equation:
[tex]\[ 9(0) - 12(A) + 4(Ax + B) = 3x - 1 \implies 4Ax + 4B - 12A = 3x - 1 \][/tex]
Comparing coefficients:
[tex]\[ 4A = 3 \quad \Rightarrow \quad A = \frac{3}{4} \][/tex]
[tex]\[ 4B - 12A = -1 \quad \Rightarrow \quad B = 2 \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = \frac{3}{4}x + 2 \][/tex]
5. Combine Solutions:
The general solution of the differential equation is:
[tex]\[ y(x) = y_h(x) + y_p(x) = (C_1 + C_2 x) e^{2x/3} + \frac{3}{4}x + 2 \][/tex]
6. Apply Initial Conditions:
Use the initial conditions to solve for [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]:
[tex]\[ y(0) = 0 \quad \Rightarrow \quad C_1 e^0 + 2 = 0 \quad \Rightarrow \quad C_1 + 2 = 0 \quad \Rightarrow \quad C_1 = -2 \][/tex]
The derivative of [tex]\( y(x) \)[/tex] is:
[tex]\[ y'(x) = \left(C_2 e^{2x/3} + \frac{2}{3}(C_1 + C_2 x)e^{2x/3}\right) + \frac{3}{4} \][/tex]
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y'(0) = C_2 + \frac{2}{3}C_1 + \frac{3}{4} = -\frac{4}{3} \][/tex]
Substituting [tex]\( C_1 = -2 \)[/tex]:
[tex]\[ C_2 + \frac{2}{3}(-2) + \frac{3}{4} = -\frac{4}{3} \][/tex]
[tex]\[ C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{1}{12} = -\frac{4}{3} \quad \Rightarrow \quad C_2 = -\frac{4}{3} + \frac{1}{12} \][/tex]
[tex]\[ C_2 = -\frac{16}{12} + \frac{1}{12} = -\frac{15}{12} = -1.25 \][/tex]
7. Particular Solution:
Thus, the particular solution of the differential equation is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
So, the particular solution of the differential equation [tex]\( 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \)[/tex] given the initial conditions is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.