Discover new knowledge and insights with IDNLearn.com's extensive Q&A database. Our Q&A platform offers detailed and trustworthy answers to ensure you have the information you need.
Sagot :
To solve the differential equation
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 8, \][/tex]
with initial conditions
[tex]\[ y(0) = 0 \quad \text{and} \quad \frac{d y}{d x}\Big|_{x = 0} = 0, \][/tex]
we'll proceed with the following steps:
### Step 1: Find the general solution of the homogeneous equation
Consider the homogeneous version of the given differential equation:
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 0. \][/tex]
To solve this, we assume a solution of the form [tex]\( y = e^{mx} \)[/tex]. Substituting [tex]\( y = e^{mx} \)[/tex] into the homogeneous equation, we get:
[tex]\[ 3m^2 e^{mx} + m e^{mx} - 4e^{mx} = 0. \][/tex]
Dividing through by [tex]\( e^{mx} \)[/tex] (which is never zero), we obtain:
[tex]\[ 3m^2 + m - 4 = 0. \][/tex]
This is a quadratic equation in terms of [tex]\( m \)[/tex]. To solve for [tex]\( m \)[/tex], we use the quadratic formula [tex]\( m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -4 \)[/tex]:
[tex]\[ m = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3} = \frac{-1 \pm \sqrt{1 + 48}}{6} = \frac{-1 \pm \sqrt{49}}{6} = \frac{-1 \pm 7}{6}. \][/tex]
Thus, the roots are:
[tex]\[ m = \frac{6}{6} = 1 \quad \text{and} \quad m = \frac{-8}{6} = -\frac{4}{3}. \][/tex]
The general solution to the homogeneous equation is then:
[tex]\[ y_h(x) = C_1 e^{x} + C_2 e^{-4x/3}. \][/tex]
### Step 2: Find a particular solution to the inhomogeneous equation
To find a particular solution [tex]\( y_p(x) \)[/tex] of the inhomogeneous equation
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 8, \][/tex]
we can try a constant solution [tex]\( y_p = k \)[/tex]. Substituting [tex]\( y_p = k \)[/tex] into the differential equation, we get:
[tex]\[ 3 \cdot 0 + 0 - 4k = 8, \][/tex]
which simplifies to:
[tex]\[ -4k = 8 \quad \Rightarrow \quad k = -2. \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = -2. \][/tex]
### Step 3: Form the general solution of the full differential equation
The general solution of the full differential equation is then the sum of the homogeneous solution and the particular solution:
[tex]\[ y(x) = C_1 e^{x} + C_2 e^{-4x/3} - 2. \][/tex]
### Step 4: Apply the initial conditions to find [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]
We use the initial conditions [tex]\( y(0) = 0 \)[/tex] and [tex]\( y'(0) = 0 \)[/tex].
1. Applying [tex]\( y(0) = 0 \)[/tex]:
[tex]\[ 0 = C_1 e^{0} + C_2 e^{0} - 2 = C_1 + C_2 - 2. \][/tex]
[tex]\[ C_1 + C_2 = 2. \][/tex]
2. Applying [tex]\( y'(0) = 0 \)[/tex]:
First, find [tex]\( y'(x) \)[/tex]:
[tex]\[ y'(x) = C_1 e^{x} - \frac{4}{3} C_2 e^{-4x/3}. \][/tex]
Then:
[tex]\[ 0 = C_1 e^{0} - \frac{4}{3} C_2 e^{0} = C_1 - \frac{4}{3} C_2. \][/tex]
Solving these two equations simultaneously:
[tex]\[ C_1 + C_2 = 2, \][/tex]
[tex]\[ C_1 - \frac{4}{3} C_2 = 0. \][/tex]
From the second equation:
[tex]\[ C_1 = \frac{4}{3} C_2. \][/tex]
Substitute this into the first equation:
[tex]\[ \frac{4}{3} C_2 + C_2 = 2, \][/tex]
[tex]\[ \frac{7}{3} C_2 = 2, \][/tex]
[tex]\[ C_2 = \frac{6}{7}. \][/tex]
Then:
[tex]\[ C_1 = \frac{4}{3} \cdot \frac{6}{7} = \frac{8}{7}. \][/tex]
### Step 5: Write the particular solution
Substituting [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex] back into the general solution, we obtain the particular solution:
[tex]\[ y(x) = \frac{8}{7} e^{x} + \frac{6}{7} e^{-4x/3} - 2. \][/tex]
So, the particular solution to the differential equation with the given initial conditions is:
[tex]\[ y(x) = \frac{8}{7} e^{x} + \frac{6}{7} e^{-4x/3} - 2. \][/tex]
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 8, \][/tex]
with initial conditions
[tex]\[ y(0) = 0 \quad \text{and} \quad \frac{d y}{d x}\Big|_{x = 0} = 0, \][/tex]
we'll proceed with the following steps:
### Step 1: Find the general solution of the homogeneous equation
Consider the homogeneous version of the given differential equation:
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 0. \][/tex]
To solve this, we assume a solution of the form [tex]\( y = e^{mx} \)[/tex]. Substituting [tex]\( y = e^{mx} \)[/tex] into the homogeneous equation, we get:
[tex]\[ 3m^2 e^{mx} + m e^{mx} - 4e^{mx} = 0. \][/tex]
Dividing through by [tex]\( e^{mx} \)[/tex] (which is never zero), we obtain:
[tex]\[ 3m^2 + m - 4 = 0. \][/tex]
This is a quadratic equation in terms of [tex]\( m \)[/tex]. To solve for [tex]\( m \)[/tex], we use the quadratic formula [tex]\( m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -4 \)[/tex]:
[tex]\[ m = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3} = \frac{-1 \pm \sqrt{1 + 48}}{6} = \frac{-1 \pm \sqrt{49}}{6} = \frac{-1 \pm 7}{6}. \][/tex]
Thus, the roots are:
[tex]\[ m = \frac{6}{6} = 1 \quad \text{and} \quad m = \frac{-8}{6} = -\frac{4}{3}. \][/tex]
The general solution to the homogeneous equation is then:
[tex]\[ y_h(x) = C_1 e^{x} + C_2 e^{-4x/3}. \][/tex]
### Step 2: Find a particular solution to the inhomogeneous equation
To find a particular solution [tex]\( y_p(x) \)[/tex] of the inhomogeneous equation
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 8, \][/tex]
we can try a constant solution [tex]\( y_p = k \)[/tex]. Substituting [tex]\( y_p = k \)[/tex] into the differential equation, we get:
[tex]\[ 3 \cdot 0 + 0 - 4k = 8, \][/tex]
which simplifies to:
[tex]\[ -4k = 8 \quad \Rightarrow \quad k = -2. \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = -2. \][/tex]
### Step 3: Form the general solution of the full differential equation
The general solution of the full differential equation is then the sum of the homogeneous solution and the particular solution:
[tex]\[ y(x) = C_1 e^{x} + C_2 e^{-4x/3} - 2. \][/tex]
### Step 4: Apply the initial conditions to find [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]
We use the initial conditions [tex]\( y(0) = 0 \)[/tex] and [tex]\( y'(0) = 0 \)[/tex].
1. Applying [tex]\( y(0) = 0 \)[/tex]:
[tex]\[ 0 = C_1 e^{0} + C_2 e^{0} - 2 = C_1 + C_2 - 2. \][/tex]
[tex]\[ C_1 + C_2 = 2. \][/tex]
2. Applying [tex]\( y'(0) = 0 \)[/tex]:
First, find [tex]\( y'(x) \)[/tex]:
[tex]\[ y'(x) = C_1 e^{x} - \frac{4}{3} C_2 e^{-4x/3}. \][/tex]
Then:
[tex]\[ 0 = C_1 e^{0} - \frac{4}{3} C_2 e^{0} = C_1 - \frac{4}{3} C_2. \][/tex]
Solving these two equations simultaneously:
[tex]\[ C_1 + C_2 = 2, \][/tex]
[tex]\[ C_1 - \frac{4}{3} C_2 = 0. \][/tex]
From the second equation:
[tex]\[ C_1 = \frac{4}{3} C_2. \][/tex]
Substitute this into the first equation:
[tex]\[ \frac{4}{3} C_2 + C_2 = 2, \][/tex]
[tex]\[ \frac{7}{3} C_2 = 2, \][/tex]
[tex]\[ C_2 = \frac{6}{7}. \][/tex]
Then:
[tex]\[ C_1 = \frac{4}{3} \cdot \frac{6}{7} = \frac{8}{7}. \][/tex]
### Step 5: Write the particular solution
Substituting [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex] back into the general solution, we obtain the particular solution:
[tex]\[ y(x) = \frac{8}{7} e^{x} + \frac{6}{7} e^{-4x/3} - 2. \][/tex]
So, the particular solution to the differential equation with the given initial conditions is:
[tex]\[ y(x) = \frac{8}{7} e^{x} + \frac{6}{7} e^{-4x/3} - 2. \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.