IDNLearn.com offers a user-friendly platform for finding and sharing knowledge. Find the answers you need quickly and accurately with help from our knowledgeable and experienced experts.
Sagot :
To find the mass of the object attached to the spring, we follow these steps:
### Step 1: Calculate the Period of Oscillations
The period [tex]\( T \)[/tex] is the time taken for one complete oscillation. Given:
- The total number of oscillations [tex]\( N \)[/tex] = 15.0
- The total time [tex]\( t \)[/tex] = 9.24 seconds
The period [tex]\( T \)[/tex] is given by:
[tex]\[ T = \frac{t}{N} \][/tex]
Substituting the given values:
[tex]\[ T = \frac{9.24 \, \text{s}}{15.0} = 0.616 \, \text{s} \][/tex]
### Step 2: Find the Angular Frequency [tex]\( \omega \)[/tex]
The angular frequency [tex]\( \omega \)[/tex] is related to the period [tex]\( T \)[/tex] by the formula:
[tex]\[ \omega = \frac{2 \pi}{T} \][/tex]
Using the calculated period [tex]\( T = 0.616 \, \text{s} \)[/tex]:
[tex]\[ \omega = \frac{2 \pi}{0.616 \, \text{s}} = 10.19997614801881 \, \text{rad/s} \][/tex]
### Step 3: Use the Angular Frequency to Find the Mass
The relationship between the angular frequency [tex]\( \omega \)[/tex], the spring constant [tex]\( k \)[/tex], and the mass [tex]\( m \)[/tex] is given by:
[tex]\[ \omega = \sqrt{\frac{k}{m}} \][/tex]
Rearranging this equation to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k}{\omega^2} \][/tex]
Given the spring constant [tex]\( k = 88.7 \, \text{N/m} \)[/tex] and the calculated angular frequency [tex]\( \omega = 10.19997614801881 \, \text{rad/s} \)[/tex]:
[tex]\[ m = \frac{88.7 \, \text{N/m}}{(10.19997614801881 \, \text{rad/s})^2} \][/tex]
[tex]\[ m = 0.8525606962596449 \, \text{kg} \][/tex]
### Conclusion
The mass of the object is:
[tex]\[ m \approx 0.853 \, \text{kg} \][/tex]
Thus, the object's mass is approximately 0.853 kg.
### Step 1: Calculate the Period of Oscillations
The period [tex]\( T \)[/tex] is the time taken for one complete oscillation. Given:
- The total number of oscillations [tex]\( N \)[/tex] = 15.0
- The total time [tex]\( t \)[/tex] = 9.24 seconds
The period [tex]\( T \)[/tex] is given by:
[tex]\[ T = \frac{t}{N} \][/tex]
Substituting the given values:
[tex]\[ T = \frac{9.24 \, \text{s}}{15.0} = 0.616 \, \text{s} \][/tex]
### Step 2: Find the Angular Frequency [tex]\( \omega \)[/tex]
The angular frequency [tex]\( \omega \)[/tex] is related to the period [tex]\( T \)[/tex] by the formula:
[tex]\[ \omega = \frac{2 \pi}{T} \][/tex]
Using the calculated period [tex]\( T = 0.616 \, \text{s} \)[/tex]:
[tex]\[ \omega = \frac{2 \pi}{0.616 \, \text{s}} = 10.19997614801881 \, \text{rad/s} \][/tex]
### Step 3: Use the Angular Frequency to Find the Mass
The relationship between the angular frequency [tex]\( \omega \)[/tex], the spring constant [tex]\( k \)[/tex], and the mass [tex]\( m \)[/tex] is given by:
[tex]\[ \omega = \sqrt{\frac{k}{m}} \][/tex]
Rearranging this equation to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k}{\omega^2} \][/tex]
Given the spring constant [tex]\( k = 88.7 \, \text{N/m} \)[/tex] and the calculated angular frequency [tex]\( \omega = 10.19997614801881 \, \text{rad/s} \)[/tex]:
[tex]\[ m = \frac{88.7 \, \text{N/m}}{(10.19997614801881 \, \text{rad/s})^2} \][/tex]
[tex]\[ m = 0.8525606962596449 \, \text{kg} \][/tex]
### Conclusion
The mass of the object is:
[tex]\[ m \approx 0.853 \, \text{kg} \][/tex]
Thus, the object's mass is approximately 0.853 kg.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.