Get the answers you've been looking for with the help of IDNLearn.com's expert community. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
Certainly! Let's go through the step-by-step solution to graph the quadratic equation [tex]\( y = x^2 + 6x + 8 \)[/tex]. We will identify the [tex]$y$[/tex]-intercept, the [tex]$x$[/tex]-intercepts, and the vertex of the parabola.
### Step 1: Identify the [tex]$y$[/tex]-intercept
The [tex]$y$[/tex]-intercept of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] is found by setting [tex]\( x = 0 \)[/tex] and solving for [tex]\( y \)[/tex].
[tex]\[ y = (0)^2 + 6(0) + 8 = 8 \][/tex]
So, the [tex]$y$[/tex]-intercept is at [tex]\( (0, 8) \)[/tex].
### Step 2: Identify the [tex]$x$[/tex]-intercepts
The [tex]$x$[/tex]-intercepts of a quadratic equation are the points where [tex]\( y = 0 \)[/tex]. To find these, we solve the equation:
[tex]\[ x^2 + 6x + 8 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1, b = 6, \)[/tex] and [tex]\( c = 8 \)[/tex]:
[tex]\[ x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{36 - 32}}{2} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{4}}{2} \][/tex]
[tex]\[ x = \frac{-6 \pm 2}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{-6 + 2}{2} = \frac{-4}{2} = -2 \][/tex]
[tex]\[ x = \frac{-6 - 2}{2} = \frac{-8}{2} = -4 \][/tex]
So, the [tex]$x$[/tex]-intercepts are at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex].
### Step 3: Identify the vertex
The vertex of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] occurs at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting [tex]\( a = 1 \)[/tex] and [tex]\( b = 6 \)[/tex]:
[tex]\[ x = -\frac{6}{2 \cdot 1} = -3 \][/tex]
Now, calculate the [tex]$y$[/tex]-coordinate by substituting [tex]\( x = -3 \)[/tex] back into the quadratic equation:
[tex]\[ y = (-3)^2 + 6(-3) + 8 \][/tex]
[tex]\[ y = 9 - 18 + 8 \][/tex]
[tex]\[ y = -1 \][/tex]
So, the vertex is at [tex]\( (-3, -1) \)[/tex].
### Step 4: Graphing the equation
1. Plot the [tex]$y$[/tex]-intercept at [tex]\( (0, 8) \)[/tex].
2. Plot the [tex]$x$[/tex]-intercepts at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex].
3. Plot the vertex at [tex]\( (-3, -1) \)[/tex].
4. Draw a parabolic curve passing through these points, opening upwards, as the coefficient of [tex]\( x^2 \)[/tex] is positive.
This creates the graph of the quadratic equation [tex]\( y = x^2 + 6x + 8 \)[/tex], showing all the key features:
- [tex]$y$[/tex]-intercept at [tex]\( (0, 8) \)[/tex]
- [tex]$x$[/tex]-intercepts at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex]
- Vertex at [tex]\( (-3, -1) \)[/tex]
The graph would look like a parabola opening upwards, with the mentioned points highlighted.
### Step 1: Identify the [tex]$y$[/tex]-intercept
The [tex]$y$[/tex]-intercept of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] is found by setting [tex]\( x = 0 \)[/tex] and solving for [tex]\( y \)[/tex].
[tex]\[ y = (0)^2 + 6(0) + 8 = 8 \][/tex]
So, the [tex]$y$[/tex]-intercept is at [tex]\( (0, 8) \)[/tex].
### Step 2: Identify the [tex]$x$[/tex]-intercepts
The [tex]$x$[/tex]-intercepts of a quadratic equation are the points where [tex]\( y = 0 \)[/tex]. To find these, we solve the equation:
[tex]\[ x^2 + 6x + 8 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1, b = 6, \)[/tex] and [tex]\( c = 8 \)[/tex]:
[tex]\[ x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{36 - 32}}{2} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{4}}{2} \][/tex]
[tex]\[ x = \frac{-6 \pm 2}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{-6 + 2}{2} = \frac{-4}{2} = -2 \][/tex]
[tex]\[ x = \frac{-6 - 2}{2} = \frac{-8}{2} = -4 \][/tex]
So, the [tex]$x$[/tex]-intercepts are at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex].
### Step 3: Identify the vertex
The vertex of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] occurs at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting [tex]\( a = 1 \)[/tex] and [tex]\( b = 6 \)[/tex]:
[tex]\[ x = -\frac{6}{2 \cdot 1} = -3 \][/tex]
Now, calculate the [tex]$y$[/tex]-coordinate by substituting [tex]\( x = -3 \)[/tex] back into the quadratic equation:
[tex]\[ y = (-3)^2 + 6(-3) + 8 \][/tex]
[tex]\[ y = 9 - 18 + 8 \][/tex]
[tex]\[ y = -1 \][/tex]
So, the vertex is at [tex]\( (-3, -1) \)[/tex].
### Step 4: Graphing the equation
1. Plot the [tex]$y$[/tex]-intercept at [tex]\( (0, 8) \)[/tex].
2. Plot the [tex]$x$[/tex]-intercepts at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex].
3. Plot the vertex at [tex]\( (-3, -1) \)[/tex].
4. Draw a parabolic curve passing through these points, opening upwards, as the coefficient of [tex]\( x^2 \)[/tex] is positive.
This creates the graph of the quadratic equation [tex]\( y = x^2 + 6x + 8 \)[/tex], showing all the key features:
- [tex]$y$[/tex]-intercept at [tex]\( (0, 8) \)[/tex]
- [tex]$x$[/tex]-intercepts at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex]
- Vertex at [tex]\( (-3, -1) \)[/tex]
The graph would look like a parabola opening upwards, with the mentioned points highlighted.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.