From everyday questions to specialized queries, IDNLearn.com has the answers. Get comprehensive answers to all your questions from our network of experienced experts.

Compare and contrast the following piecewise defined functions:

[tex]\[
f(x) = \left\{
\begin{array}{rl}
-x + 2, & x \ \textless \ 0 \\
x^2 + 1, & x \ \textgreater \ 0
\end{array}
\right.
\][/tex]

[tex]\[
g(x) = \left\{
\begin{array}{ll}
x + 2, & x \ \textless \ 0 \\
x^2 + 2, & x \ \textgreater \ 0
\end{array}
\right.
\][/tex]


Sagot :

To compare and contrast the piecewise defined functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], we will examine their behavior in different segments of the domain.

### Definitions:
[tex]\[ f(x)=\left\{ \begin{array}{rl} -x + 2, & x < 0 \\ x^2 + 1, & x > 0 \end{array} \right. \][/tex]
[tex]\[ g(x)=\left\{ \begin{array}{ll} x + 2, & x < 0 \\ x^2 + 2, & x > 0 \end{array} \right. \][/tex]

### Comparisons at Specific Points:
We will evaluate and compare [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] at the points [tex]\( x = -2 \)[/tex], [tex]\( x = -1 \)[/tex], [tex]\( x = 1 \)[/tex], and [tex]\( x = 2 \)[/tex].

1. At [tex]\( x = -2 \)[/tex]:
- For [tex]\( f(x) \)[/tex]:
[tex]\[ f(-2) = -(-2) + 2 = 2 + 2 = 4 \][/tex]
- For [tex]\( g(x) \)[/tex]:
[tex]\[ g(-2) = -2 + 2 = 0 \][/tex]

Thus, at [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = 4 \][/tex]
[tex]\[ g(-2) = 0 \][/tex]

2. At [tex]\( x = -1 \)[/tex]:
- For [tex]\( f(x) \)[/tex]:
[tex]\[ f(-1) = -(-1) + 2 = 1 + 2 = 3 \][/tex]
- For [tex]\( g(x) \)[/tex]:
[tex]\[ g(-1) = -1 + 2 = 1 \][/tex]

Thus, at [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 3 \][/tex]
[tex]\[ g(-1) = 1 \][/tex]

3. At [tex]\( x = 1 \)[/tex]:
- For [tex]\( f(x) \)[/tex]:
[tex]\[ f(1) = 1^2 + 1 = 1 + 1 = 2 \][/tex]
- For [tex]\( g(x) \)[/tex]:
[tex]\[ g(1) = 1^2 + 2 = 1 + 2 = 3 \][/tex]

Thus, at [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2 \][/tex]
[tex]\[ g(1) = 3 \][/tex]

4. At [tex]\( x = 2 \)[/tex]:
- For [tex]\( f(x) \)[/tex]:
[tex]\[ f(2) = 2^2 + 1 = 4 + 1 = 5 \][/tex]
- For [tex]\( g(x) \)[/tex]:
[tex]\[ g(2) = 2^2 + 2 = 4 + 2 = 6 \][/tex]

Thus, at [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5 \][/tex]
[tex]\[ g(2) = 6 \][/tex]

### Summary of Results:
- At [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = 4, \quad g(-2) = 0 \][/tex]
- At [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 3, \quad g(-1) = 1 \][/tex]
- At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2, \quad g(1) = 3 \][/tex]
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5, \quad g(2) = 6 \][/tex]

### Comparison and Contrast:
1. For [tex]\( x < 0 \)[/tex]:
- For negative values, both functions are linear.
- [tex]\( f(x) \)[/tex] decreases as [tex]\( x \)[/tex] decreases (i.e., slope = -1), while [tex]\( g(x) \)[/tex] increases as [tex]\( x \)[/tex] decreases (i.e., slope = 1).
- The values of [tex]\( f(x) \)[/tex] are higher than those of [tex]\( g(x) \)[/tex] for the same negative [tex]\( x \)[/tex].

2. For [tex]\( x > 0 \)[/tex]:
- For positive values, both functions are quadratic.
- [tex]\( f(x) = x^2 + 1 \)[/tex] is always less than [tex]\( g(x) = x^2 + 2 \)[/tex] by exactly 1 for any [tex]\( x > 0 \)[/tex].

### Conclusion:
While both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are piecewise defined functions with linear components for [tex]\( x < 0 \)[/tex] and quadratic components for [tex]\( x > 0 \)[/tex], they differ in both segments of their domain. For [tex]\( x < 0 \)[/tex], [tex]\(f(x)\)[/tex] yields higher values than [tex]\(g(x)\)[/tex]. For [tex]\( x > 0 \)[/tex], [tex]\(g(x)\)[/tex] exceeds [tex]\(f(x)\)[/tex] by a constant difference of 1 unit.