Discover a world of knowledge and get your questions answered at IDNLearn.com. Find reliable solutions to your questions quickly and easily with help from our experienced experts.
Sagot :
To find the equilibrium concentration of [tex]\( Cl_2 \)[/tex] for the given reaction at a specified value of [tex]\( K_c \)[/tex], we'll follow these steps in a detailed, step-by-step manner:
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.