Get detailed and accurate responses to your questions on IDNLearn.com. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
To find the equilibrium concentration of [tex]\( Cl_2 \)[/tex] for the given reaction at a specified value of [tex]\( K_c \)[/tex], we'll follow these steps in a detailed, step-by-step manner:
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.