Discover a world of knowledge and community-driven answers at IDNLearn.com today. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
Certainly, let's solve the problem step-by-step:
### Given Problem
Let [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] be a random sample of size 2 from a distribution with the probability mass function:
[tex]\[ f(x) = \begin{cases} \frac{1}{4}, & \text{for } x = 1, 2, 3, 4 \\ 0, & \text{elsewhere} \end{cases} \][/tex]
We need to find:
a) The probability distribution of [tex]\( T = X_1 + X_2 \)[/tex].
b) The mean and variance of [tex]\( T = X_1 + X_2 \)[/tex].
c) The probability that [tex]\( T > 3 \)[/tex].
### a) The Probability Distribution of [tex]\( T = X_1 + X_2 \)[/tex]
First, we list all possible values of [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex]:
[tex]\[ X_1, X_2 \in \{1, 2, 3, 4\} \][/tex]
By summing [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex], we can find the possible values of [tex]\( T = X_1 + X_2 \)[/tex] and their respective probabilities. The possible values of [tex]\( T \)[/tex] range from [tex]\( 2 \)[/tex] (i.e., [tex]\( 1+1 \)[/tex]) to [tex]\( 8 \)[/tex] (i.e., [tex]\( 4+4 \)[/tex]).
All combinations and their counts:
[tex]\[ \begin{aligned} &E(2): 1+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ &E(3): 1+2, 2+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(4): 1+3, 2+2, 3+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(5): 1+4, 2+3, 3+2, 4+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 4 = 0.25 \\ &E(6): 2+4, 3+3, 4+2 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(7): 3+4, 4+3 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(8): 4+4 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ \end{aligned} \][/tex]
So the probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
### b) The Mean and Variance of [tex]\( T = X_1 + X_2 \)[/tex]
#### Mean of [tex]\( T \)[/tex]:
The mean (expected value) [tex]\( E(T) \)[/tex] can be calculated as:
[tex]\[ E(T) = \sum_{t=2}^{8} t \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T) = 2 \cdot 0.0625 + 3 \cdot 0.125 + 4 \cdot 0.1875 + 5 \cdot 0.25 + 6 \cdot 0.1875 + 7 \cdot 0.125 + 8 \cdot 0.0625 = 5.0 \][/tex]
#### Variance of [tex]\( T \)[/tex]:
First, compute [tex]\( E(T^2) \)[/tex]:
[tex]\[ E(T^2) = \sum_{t=2}^{8} t^2 \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T^2) = 2^2 \cdot 0.0625 + 3^2 \cdot 0.125 + 4^2 \cdot 0.1875 + 5^2 \cdot 0.25 + 6^2 \cdot 0.1875 + 7^2 \cdot 0.125 + 8^2 \cdot 0.0625 = 27.5 \][/tex]
Now, use the formula for variance:
[tex]\[ \text{Var}(T) = E(T^2) - \left(E(T)\right)^2 = 27.5 - 5^2 = 27.5 - 25 = 2.5 \][/tex]
So, the mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
### c) The Probability that [tex]\( T > 3 \)[/tex]
To find [tex]\( P(T > 3) \)[/tex]:
[tex]\[ P(T > 3) = P(T=4) + P(T=5) + P(T=6) + P(T=7) + P(T=8) \][/tex]
Substituting the values:
[tex]\[ P(T > 3) = 0.1875 + 0.25 + 0.1875 + 0.125 + 0.0625 = 0.8125 \][/tex]
So, the probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
### Summary
a) The probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
b) The mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
c) The probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
### Given Problem
Let [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] be a random sample of size 2 from a distribution with the probability mass function:
[tex]\[ f(x) = \begin{cases} \frac{1}{4}, & \text{for } x = 1, 2, 3, 4 \\ 0, & \text{elsewhere} \end{cases} \][/tex]
We need to find:
a) The probability distribution of [tex]\( T = X_1 + X_2 \)[/tex].
b) The mean and variance of [tex]\( T = X_1 + X_2 \)[/tex].
c) The probability that [tex]\( T > 3 \)[/tex].
### a) The Probability Distribution of [tex]\( T = X_1 + X_2 \)[/tex]
First, we list all possible values of [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex]:
[tex]\[ X_1, X_2 \in \{1, 2, 3, 4\} \][/tex]
By summing [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex], we can find the possible values of [tex]\( T = X_1 + X_2 \)[/tex] and their respective probabilities. The possible values of [tex]\( T \)[/tex] range from [tex]\( 2 \)[/tex] (i.e., [tex]\( 1+1 \)[/tex]) to [tex]\( 8 \)[/tex] (i.e., [tex]\( 4+4 \)[/tex]).
All combinations and their counts:
[tex]\[ \begin{aligned} &E(2): 1+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ &E(3): 1+2, 2+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(4): 1+3, 2+2, 3+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(5): 1+4, 2+3, 3+2, 4+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 4 = 0.25 \\ &E(6): 2+4, 3+3, 4+2 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(7): 3+4, 4+3 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(8): 4+4 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ \end{aligned} \][/tex]
So the probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
### b) The Mean and Variance of [tex]\( T = X_1 + X_2 \)[/tex]
#### Mean of [tex]\( T \)[/tex]:
The mean (expected value) [tex]\( E(T) \)[/tex] can be calculated as:
[tex]\[ E(T) = \sum_{t=2}^{8} t \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T) = 2 \cdot 0.0625 + 3 \cdot 0.125 + 4 \cdot 0.1875 + 5 \cdot 0.25 + 6 \cdot 0.1875 + 7 \cdot 0.125 + 8 \cdot 0.0625 = 5.0 \][/tex]
#### Variance of [tex]\( T \)[/tex]:
First, compute [tex]\( E(T^2) \)[/tex]:
[tex]\[ E(T^2) = \sum_{t=2}^{8} t^2 \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T^2) = 2^2 \cdot 0.0625 + 3^2 \cdot 0.125 + 4^2 \cdot 0.1875 + 5^2 \cdot 0.25 + 6^2 \cdot 0.1875 + 7^2 \cdot 0.125 + 8^2 \cdot 0.0625 = 27.5 \][/tex]
Now, use the formula for variance:
[tex]\[ \text{Var}(T) = E(T^2) - \left(E(T)\right)^2 = 27.5 - 5^2 = 27.5 - 25 = 2.5 \][/tex]
So, the mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
### c) The Probability that [tex]\( T > 3 \)[/tex]
To find [tex]\( P(T > 3) \)[/tex]:
[tex]\[ P(T > 3) = P(T=4) + P(T=5) + P(T=6) + P(T=7) + P(T=8) \][/tex]
Substituting the values:
[tex]\[ P(T > 3) = 0.1875 + 0.25 + 0.1875 + 0.125 + 0.0625 = 0.8125 \][/tex]
So, the probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
### Summary
a) The probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
b) The mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
c) The probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.