IDNLearn.com offers a unique blend of expert answers and community-driven insights. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Given a right triangle with side lengths [tex]\(AC = 7\)[/tex] inches, [tex]\(BC = 24\)[/tex] inches, and [tex]\(AB = 25\)[/tex] inches, we need to find the measures of the angles in triangle [tex]\(ABC\)[/tex].
First, let's note the relationship between the sides and the angles. In any right triangle:
- The hypotenuse is the longest side, which is [tex]\(AB = 25\)[/tex] inches in this case.
- [tex]\(AC\)[/tex] and [tex]\(BC\)[/tex] are the legs of the triangle.
Since angle [tex]\(C\)[/tex] is the right angle ([tex]\(90^\circ\)[/tex]), we need to calculate the measures of angles [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Using the cosine rule, we can find these angles step-by-step:
### Calculating [tex]\(\angle A\)[/tex]:
The cosine of angle [tex]\(A\)[/tex], adjacent to side [tex]\(BC\)[/tex] and opposite side [tex]\(AC\)[/tex], is given by the formula:
[tex]\[ \cos(A) = \frac{BC^2 + AB^2 - AC^2}{2 \cdot BC \cdot AB} \][/tex]
Substituting the given values:
[tex]\[ \cos(A) = \frac{24^2 + 25^2 - 7^2}{2 \cdot 24 \cdot 25} \][/tex]
[tex]\[ \cos(A) = \frac{576 + 625 - 49}{1200} \][/tex]
[tex]\[ \cos(A) = \frac{1152}{1200} \][/tex]
[tex]\[ \cos(A) = 0.96 \][/tex]
Therefore, [tex]\(\angle A\)[/tex] can be calculated using the arccosine function:
[tex]\[ \angle A \approx \cos^{-1}(0.96) \approx 16.3^\circ \][/tex]
### Calculating [tex]\(\angle B\)[/tex]:
Similarly, the cosine of angle [tex]\(B\)[/tex], adjacent to side [tex]\(AC\)[/tex] and opposite side [tex]\(BC\)[/tex], is given by the formula:
[tex]\[ \cos(B) = \frac{AC^2 + AB^2 - BC^2}{2 \cdot AC \cdot AB} \][/tex]
Substituting the given values:
[tex]\[ \cos(B) = \frac{7^2 + 25^2 - 24^2}{2 \cdot 7 \cdot 25} \][/tex]
[tex]\[ \cos(B) = \frac{49 + 625 - 576}{350} \][/tex]
[tex]\[ \cos(B) = \frac{98}{350} \][/tex]
[tex]\[ \cos(B) = 0.28 \][/tex]
Therefore, [tex]\(\angle B\)[/tex] can be calculated using the arccosine function:
[tex]\[ \angle B \approx \cos^{-1}(0.28) \approx 73.7^\circ \][/tex]
### Conclusion:
We have calculated the angles in triangle [tex]\(ABC\)[/tex] as approximately:
[tex]\[ \angle A \approx 16.3^\circ \][/tex]
[tex]\[ \angle B \approx 73.7^\circ \][/tex]
[tex]\[ \angle C = 90^\circ \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{m \angle A \approx 16.3^\circ, m \angle B \approx 73.7^\circ, m \angle C = 90^\circ} \][/tex]
First, let's note the relationship between the sides and the angles. In any right triangle:
- The hypotenuse is the longest side, which is [tex]\(AB = 25\)[/tex] inches in this case.
- [tex]\(AC\)[/tex] and [tex]\(BC\)[/tex] are the legs of the triangle.
Since angle [tex]\(C\)[/tex] is the right angle ([tex]\(90^\circ\)[/tex]), we need to calculate the measures of angles [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Using the cosine rule, we can find these angles step-by-step:
### Calculating [tex]\(\angle A\)[/tex]:
The cosine of angle [tex]\(A\)[/tex], adjacent to side [tex]\(BC\)[/tex] and opposite side [tex]\(AC\)[/tex], is given by the formula:
[tex]\[ \cos(A) = \frac{BC^2 + AB^2 - AC^2}{2 \cdot BC \cdot AB} \][/tex]
Substituting the given values:
[tex]\[ \cos(A) = \frac{24^2 + 25^2 - 7^2}{2 \cdot 24 \cdot 25} \][/tex]
[tex]\[ \cos(A) = \frac{576 + 625 - 49}{1200} \][/tex]
[tex]\[ \cos(A) = \frac{1152}{1200} \][/tex]
[tex]\[ \cos(A) = 0.96 \][/tex]
Therefore, [tex]\(\angle A\)[/tex] can be calculated using the arccosine function:
[tex]\[ \angle A \approx \cos^{-1}(0.96) \approx 16.3^\circ \][/tex]
### Calculating [tex]\(\angle B\)[/tex]:
Similarly, the cosine of angle [tex]\(B\)[/tex], adjacent to side [tex]\(AC\)[/tex] and opposite side [tex]\(BC\)[/tex], is given by the formula:
[tex]\[ \cos(B) = \frac{AC^2 + AB^2 - BC^2}{2 \cdot AC \cdot AB} \][/tex]
Substituting the given values:
[tex]\[ \cos(B) = \frac{7^2 + 25^2 - 24^2}{2 \cdot 7 \cdot 25} \][/tex]
[tex]\[ \cos(B) = \frac{49 + 625 - 576}{350} \][/tex]
[tex]\[ \cos(B) = \frac{98}{350} \][/tex]
[tex]\[ \cos(B) = 0.28 \][/tex]
Therefore, [tex]\(\angle B\)[/tex] can be calculated using the arccosine function:
[tex]\[ \angle B \approx \cos^{-1}(0.28) \approx 73.7^\circ \][/tex]
### Conclusion:
We have calculated the angles in triangle [tex]\(ABC\)[/tex] as approximately:
[tex]\[ \angle A \approx 16.3^\circ \][/tex]
[tex]\[ \angle B \approx 73.7^\circ \][/tex]
[tex]\[ \angle C = 90^\circ \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{m \angle A \approx 16.3^\circ, m \angle B \approx 73.7^\circ, m \angle C = 90^\circ} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.