Find answers to your most challenging questions with the help of IDNLearn.com's experts. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
Certainly! To determine the optimal daily production mix given the constraints and the objective function, we'll follow these steps.
Objective:
Minimize [tex]\( z = 4x_1 + x_2 \)[/tex]
Subject to constraints:
1. [tex]\( 3x_1 + x_2 \leq 30 \)[/tex]
2. [tex]\( 4x_1 + 3x_2 \geq 60 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 40 \)[/tex]
4. [tex]\( x_1, x_2 \geq 0 \)[/tex]
### Step-by-Step Solution:
1. Convert all inequalities to standard form:
To handle different forms (≥ or ≤), we transform them to standard "≤" form by multiplying inequalities with a negative sign if necessary.
- The first constraint already is a "≤" type:
[tex]\[ 3x_1 + x_2 \leq 30 \][/tex]
- The seconda constraint can be converted to a "≤":
[tex]\[ 4x_1 + 3x_2 \geq 60 \quad \text{which becomes} \quad -4x_1 - 3x_2 \leq -60 \][/tex]
- The third constraint is of "≤" type:
[tex]\[ x_1 + 2x_2 \leq 40 \][/tex]
2. Bounds:
We need to add the non-negative constraints for the variables:
[tex]\[ x_1 \geq 0, \quad x_2 \geq 0 \][/tex]
3. Set up the Linear Programming (LP) problem:
Now, we have the LP problem as:
[tex]\[ \begin{aligned} \text{Minimize} \quad & z = 4x_1 + x_2 \\ \text{subject to} \quad & 3x_1 + x_2 \leq 30, \\ & -4x_1 - 3x_2 \leq -60, \\ & x_1 + 2x_2 \leq 40, \\ & x_1 \geq 0, \\ & x_2 \geq 0. \end{aligned} \][/tex]
4. Solving the LP problem:
The optimal solution to this problem is [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
The value of the objective function at this point is:
[tex]\[ z = 4(0) + 1(20) = 20 \][/tex]
### Result:
The optimal daily production mix is:
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 20 \)[/tex]
This gives us a minimized cost of [tex]\( z = 20 \)[/tex].
So, the minimum value of the objective function [tex]\( z \)[/tex] is 20, achieved when [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
Objective:
Minimize [tex]\( z = 4x_1 + x_2 \)[/tex]
Subject to constraints:
1. [tex]\( 3x_1 + x_2 \leq 30 \)[/tex]
2. [tex]\( 4x_1 + 3x_2 \geq 60 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 40 \)[/tex]
4. [tex]\( x_1, x_2 \geq 0 \)[/tex]
### Step-by-Step Solution:
1. Convert all inequalities to standard form:
To handle different forms (≥ or ≤), we transform them to standard "≤" form by multiplying inequalities with a negative sign if necessary.
- The first constraint already is a "≤" type:
[tex]\[ 3x_1 + x_2 \leq 30 \][/tex]
- The seconda constraint can be converted to a "≤":
[tex]\[ 4x_1 + 3x_2 \geq 60 \quad \text{which becomes} \quad -4x_1 - 3x_2 \leq -60 \][/tex]
- The third constraint is of "≤" type:
[tex]\[ x_1 + 2x_2 \leq 40 \][/tex]
2. Bounds:
We need to add the non-negative constraints for the variables:
[tex]\[ x_1 \geq 0, \quad x_2 \geq 0 \][/tex]
3. Set up the Linear Programming (LP) problem:
Now, we have the LP problem as:
[tex]\[ \begin{aligned} \text{Minimize} \quad & z = 4x_1 + x_2 \\ \text{subject to} \quad & 3x_1 + x_2 \leq 30, \\ & -4x_1 - 3x_2 \leq -60, \\ & x_1 + 2x_2 \leq 40, \\ & x_1 \geq 0, \\ & x_2 \geq 0. \end{aligned} \][/tex]
4. Solving the LP problem:
The optimal solution to this problem is [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
The value of the objective function at this point is:
[tex]\[ z = 4(0) + 1(20) = 20 \][/tex]
### Result:
The optimal daily production mix is:
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 20 \)[/tex]
This gives us a minimized cost of [tex]\( z = 20 \)[/tex].
So, the minimum value of the objective function [tex]\( z \)[/tex] is 20, achieved when [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.