IDNLearn.com makes it easy to find answers and share knowledge with others. Whether it's a simple query or a complex problem, our community has the answers you need.
Sagot :
Certainly! To determine the optimal daily production mix given the constraints and the objective function, we'll follow these steps.
Objective:
Minimize [tex]\( z = 4x_1 + x_2 \)[/tex]
Subject to constraints:
1. [tex]\( 3x_1 + x_2 \leq 30 \)[/tex]
2. [tex]\( 4x_1 + 3x_2 \geq 60 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 40 \)[/tex]
4. [tex]\( x_1, x_2 \geq 0 \)[/tex]
### Step-by-Step Solution:
1. Convert all inequalities to standard form:
To handle different forms (≥ or ≤), we transform them to standard "≤" form by multiplying inequalities with a negative sign if necessary.
- The first constraint already is a "≤" type:
[tex]\[ 3x_1 + x_2 \leq 30 \][/tex]
- The seconda constraint can be converted to a "≤":
[tex]\[ 4x_1 + 3x_2 \geq 60 \quad \text{which becomes} \quad -4x_1 - 3x_2 \leq -60 \][/tex]
- The third constraint is of "≤" type:
[tex]\[ x_1 + 2x_2 \leq 40 \][/tex]
2. Bounds:
We need to add the non-negative constraints for the variables:
[tex]\[ x_1 \geq 0, \quad x_2 \geq 0 \][/tex]
3. Set up the Linear Programming (LP) problem:
Now, we have the LP problem as:
[tex]\[ \begin{aligned} \text{Minimize} \quad & z = 4x_1 + x_2 \\ \text{subject to} \quad & 3x_1 + x_2 \leq 30, \\ & -4x_1 - 3x_2 \leq -60, \\ & x_1 + 2x_2 \leq 40, \\ & x_1 \geq 0, \\ & x_2 \geq 0. \end{aligned} \][/tex]
4. Solving the LP problem:
The optimal solution to this problem is [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
The value of the objective function at this point is:
[tex]\[ z = 4(0) + 1(20) = 20 \][/tex]
### Result:
The optimal daily production mix is:
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 20 \)[/tex]
This gives us a minimized cost of [tex]\( z = 20 \)[/tex].
So, the minimum value of the objective function [tex]\( z \)[/tex] is 20, achieved when [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
Objective:
Minimize [tex]\( z = 4x_1 + x_2 \)[/tex]
Subject to constraints:
1. [tex]\( 3x_1 + x_2 \leq 30 \)[/tex]
2. [tex]\( 4x_1 + 3x_2 \geq 60 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 40 \)[/tex]
4. [tex]\( x_1, x_2 \geq 0 \)[/tex]
### Step-by-Step Solution:
1. Convert all inequalities to standard form:
To handle different forms (≥ or ≤), we transform them to standard "≤" form by multiplying inequalities with a negative sign if necessary.
- The first constraint already is a "≤" type:
[tex]\[ 3x_1 + x_2 \leq 30 \][/tex]
- The seconda constraint can be converted to a "≤":
[tex]\[ 4x_1 + 3x_2 \geq 60 \quad \text{which becomes} \quad -4x_1 - 3x_2 \leq -60 \][/tex]
- The third constraint is of "≤" type:
[tex]\[ x_1 + 2x_2 \leq 40 \][/tex]
2. Bounds:
We need to add the non-negative constraints for the variables:
[tex]\[ x_1 \geq 0, \quad x_2 \geq 0 \][/tex]
3. Set up the Linear Programming (LP) problem:
Now, we have the LP problem as:
[tex]\[ \begin{aligned} \text{Minimize} \quad & z = 4x_1 + x_2 \\ \text{subject to} \quad & 3x_1 + x_2 \leq 30, \\ & -4x_1 - 3x_2 \leq -60, \\ & x_1 + 2x_2 \leq 40, \\ & x_1 \geq 0, \\ & x_2 \geq 0. \end{aligned} \][/tex]
4. Solving the LP problem:
The optimal solution to this problem is [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
The value of the objective function at this point is:
[tex]\[ z = 4(0) + 1(20) = 20 \][/tex]
### Result:
The optimal daily production mix is:
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 20 \)[/tex]
This gives us a minimized cost of [tex]\( z = 20 \)[/tex].
So, the minimum value of the objective function [tex]\( z \)[/tex] is 20, achieved when [tex]\( x_1 = 0 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.