Get expert advice and community support for all your questions on IDNLearn.com. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
To evaluate the given logarithms, we will use the change of base formula:
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.