IDNLearn.com connects you with a community of experts ready to answer your questions. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.
Sagot :
To evaluate the given logarithms, we will use the change of base formula:
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.