IDNLearn.com provides a seamless experience for finding the answers you need. Our platform is designed to provide reliable and thorough answers to all your questions, no matter the topic.

Use Descartes' Rule of Signs to determine the possible combinations of real and imaginary zeros of each polynomial. Then, identify all the zeros of each polynomial. Please show all work for full credit.

1. [tex]f(x) = x^3 + 2x^2 - 16x - 32[/tex]


Sagot :

To analyze the polynomial [tex]\( f(x) = x^3 + 2x^2 - 16x - 32 \)[/tex] using Descartes' Rule of Signs, we follow these steps:

1. Determine the number of positive real zeros by examining the sign changes in [tex]\( f(x) \)[/tex].
2. Determine the number of negative real zeros by examining the sign changes in [tex]\( f(-x) \)[/tex].
3. List possible combinations of positive, negative, and imaginary zeros.
4. Identify all real zeros by solving the polynomial.

### Step 1: Positive Real Zeros

First, observe the sign changes in [tex]\( f(x) \)[/tex].

[tex]\[ f(x) = x^3 + 2x^2 - 16x - 32 \][/tex]

The coefficients are [tex]\( 1, 2, -16, -32 \)[/tex]. Analyze the sequence of signs:

- Going from [tex]\( 1 \)[/tex] to [tex]\( 2 \)[/tex], the sign does not change (positive to positive).
- Going from [tex]\( 2 \)[/tex] to [tex]\( -16 \)[/tex], the sign changes (positive to negative).
- Going from [tex]\( -16 \)[/tex] to [tex]\( -32 \)[/tex], the sign does not change (negative to negative).

Thus, there is exactly 1 sign change. According to Descartes' Rule of Signs, there is exactly one positive real zero.

### Step 2: Negative Real Zeros

Next, we need [tex]\( f(-x) \)[/tex]. Substitute [tex]\(-x\)[/tex] for [tex]\(x\)[/tex]:

[tex]\[ f(-x) = (-x)^3 + 2(-x)^2 - 16(-x) - 32 = -x^3 + 2x^2 + 16x - 32 \][/tex]

Now, observe the sign changes in [tex]\( f(-x) \)[/tex]:

- Going from [tex]\( -1 \)[/tex] to [tex]\( 2 \)[/tex], the sign changes (negative to positive).
- Going from [tex]\( 2 \)[/tex] to [tex]\( 16 \)[/tex], the sign does not change (positive to positive).
- Going from [tex]\( 16 \)[/tex] to [tex]\( -32 \)[/tex], the sign changes (positive to negative).

Thus, there are 2 sign changes. According to Descartes' Rule of Signs, there could be 2 or 0 negative real zeros (each sign change corresponds to a possible pair of negative real zeros).

### Step 3: Possible Combinations of Real and Imaginary Zeros

The degree of [tex]\( f(x) \)[/tex] is 3, so the total number of zeros (real and imaginary) should add up to 3.

Since we have determined:
- 1 positive real zero
- Either 2 or 0 negative real zeros,
- The rest must be imaginary.

Thus, the possible combinations are:
1. [tex]\(1\)[/tex] positive, [tex]\(2\)[/tex] negative, and [tex]\(0\)[/tex] imaginary zeros.
2. [tex]\(1\)[/tex] positive, [tex]\(0\)[/tex] negative, and [tex]\(2\)[/tex] imaginary zeros.

### Step 4: Identify All Zeros

To determine the exact zeros, solve the polynomial equation [tex]\( f(x) = 0 \)[/tex]:

[tex]\[ x^3 + 2x^2 - 16x - 32 = 0 \][/tex]

To do this analytically, one approach is to apply the Rational Root Theorem to find potential rational zeros, and then verify them by synthetic division or direct substitution.

Possible Rational Roots are [tex]\( \pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32 \)[/tex].

Test these:

- Trying [tex]\( x = 2 \)[/tex]:

[tex]\[ f(2) = 2^3 + 2(2)^2 - 16(2) - 32 \][/tex]
[tex]\[ = 8 + 8 - 32 - 32 \][/tex]
[tex]\[ = 16 - 64 \][/tex]
[tex]\[ = -48 \quad \text{(not a zero)} \][/tex]

- Trying [tex]\( x = -2 \)[/tex]:

[tex]\[ f(-2) = (-2)^3 + 2(-2)^2 - 16(-2) - 32 \][/tex]
[tex]\[ = -8 + 8 + 32 - 32 \][/tex]
[tex]\[ = 0 \quad \text{(a zero)} \][/tex]

So [tex]\( x = -2 \)[/tex] is a root. Use synthetic division to factor [tex]\( f(x) \)[/tex]:

[tex]\[ \begin{array}{r|rrr} -2 & 1 & 2 & -16 & -32 \\ & & -2 & 0 & 32 \\ \hline & 1 & 0 & -16 & 0 \\ \end{array} \][/tex]

Resulting in:
[tex]\[ f(x) = (x + 2)(x^2 - 16) \][/tex]

Further, factor [tex]\( x^2 - 16 \)[/tex]:

[tex]\[ x^2 - 16 = (x - 4)(x + 4) \][/tex]

Hence:
[tex]\[ f(x) = (x + 2)(x - 4)(x + 4) \][/tex]

### Zeros

Thus, the zeros of [tex]\( f(x) \)[/tex] are:

[tex]\[ x = -2, \quad x = 4, \quad x = -4 \][/tex]

So the final result is:

- There is 1 positive real zero: [tex]\( x = 4 \)[/tex].
- There are 2 negative real zeros: [tex]\( x = -2, -4 \)[/tex].
- There are no imaginary zeros.

Therefore, the zeros are [tex]\( \boxed{-2, 4, -4} \)[/tex].