Discover the best answers to your questions with the help of IDNLearn.com. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.
Sagot :
To determine the expected change in the freezing point of water in a solution of [tex]\( 62.5 \)[/tex] g of barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) in 1 kg of water, we need to follow several steps. Here's a detailed step-by-step calculation:
### Step 1: Calculate the number of moles of [tex]\(Ba(NO_3)_2\)[/tex]
The given mass of barium nitrate is [tex]\(62.5 \)[/tex] g and the molar mass of [tex]\(Ba(NO_3)_2\)[/tex] is [tex]\(261 \)[/tex] g/mol. The number of moles can be determined using the formula:
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{\text{mass}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{62.5 \text{ g}}{261 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 \approx 0.239 \text{ moles} \][/tex]
### Step 2: Determining the Van't Hoff factor
Barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) dissociates completely in water to form barium ions ([tex]\(Ba^{2+}\)[/tex]) and nitrate ions ([tex]\(NO_3^-\)[/tex]). The dissociation can be represented as:
[tex]\[ Ba(NO_3)_2 \rightarrow Ba^{2+} + 2 NO_3^- \][/tex]
This results in 3 ions (1 [tex]\(Ba^{2+}\)[/tex] ion and 2 [tex]\(NO_3^-\)[/tex] ions).
So, the Van't Hoff factor [tex]\(i\)[/tex] for [tex]\(Ba(NO_3)_2\)[/tex] is:
[tex]\[ i = 3 \][/tex]
### Step 3: Calculate the freezing point depression
The formula for freezing point depression ([tex]\(\Delta T_f\)[/tex]) is:
[tex]\[ \Delta T_f = i \cdot K_f \cdot m \][/tex]
where:
- [tex]\( i \)[/tex] is the Van't Hoff factor
- [tex]\( K_f \)[/tex] is the freezing point depression constant for water ([tex]\(1.86 \ ^\circ C \cdot kg/mol\)[/tex])
- [tex]\( m \)[/tex] is the molality of the solution
The molality [tex]\(m\)[/tex] of the solution is calculated as:
[tex]\[ m = \frac{\text{moles of solute}}{\text{kg of solvent}} \][/tex]
Here, the solvent is water and its mass is 1 kg:
[tex]\[ m = \frac{0.239 \text{ moles}}{1 \text{ kg}} \][/tex]
[tex]\[ m = 0.239 \text{ mol/kg} \][/tex]
Now, substitute these values into the freezing point depression formula:
[tex]\[ \Delta T_f = 3 \cdot 1.86 \ ^\circ C \cdot kg/mol \cdot 0.239 \text{ mol/kg} \][/tex]
[tex]\[ \Delta T_f \approx 1.336 \ ^\circ C \][/tex]
### Conclusion
The freezing point of water decreases by approximately [tex]\(1.336 \ ^\circ C\)[/tex], which means the change in the freezing point is [tex]\(-1.336 \ ^\circ C\)[/tex].
Among the given options, the closest correct answer is:
a. [tex]\(-1.34 ^\circ C\)[/tex]
### Step 1: Calculate the number of moles of [tex]\(Ba(NO_3)_2\)[/tex]
The given mass of barium nitrate is [tex]\(62.5 \)[/tex] g and the molar mass of [tex]\(Ba(NO_3)_2\)[/tex] is [tex]\(261 \)[/tex] g/mol. The number of moles can be determined using the formula:
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{\text{mass}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{62.5 \text{ g}}{261 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 \approx 0.239 \text{ moles} \][/tex]
### Step 2: Determining the Van't Hoff factor
Barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) dissociates completely in water to form barium ions ([tex]\(Ba^{2+}\)[/tex]) and nitrate ions ([tex]\(NO_3^-\)[/tex]). The dissociation can be represented as:
[tex]\[ Ba(NO_3)_2 \rightarrow Ba^{2+} + 2 NO_3^- \][/tex]
This results in 3 ions (1 [tex]\(Ba^{2+}\)[/tex] ion and 2 [tex]\(NO_3^-\)[/tex] ions).
So, the Van't Hoff factor [tex]\(i\)[/tex] for [tex]\(Ba(NO_3)_2\)[/tex] is:
[tex]\[ i = 3 \][/tex]
### Step 3: Calculate the freezing point depression
The formula for freezing point depression ([tex]\(\Delta T_f\)[/tex]) is:
[tex]\[ \Delta T_f = i \cdot K_f \cdot m \][/tex]
where:
- [tex]\( i \)[/tex] is the Van't Hoff factor
- [tex]\( K_f \)[/tex] is the freezing point depression constant for water ([tex]\(1.86 \ ^\circ C \cdot kg/mol\)[/tex])
- [tex]\( m \)[/tex] is the molality of the solution
The molality [tex]\(m\)[/tex] of the solution is calculated as:
[tex]\[ m = \frac{\text{moles of solute}}{\text{kg of solvent}} \][/tex]
Here, the solvent is water and its mass is 1 kg:
[tex]\[ m = \frac{0.239 \text{ moles}}{1 \text{ kg}} \][/tex]
[tex]\[ m = 0.239 \text{ mol/kg} \][/tex]
Now, substitute these values into the freezing point depression formula:
[tex]\[ \Delta T_f = 3 \cdot 1.86 \ ^\circ C \cdot kg/mol \cdot 0.239 \text{ mol/kg} \][/tex]
[tex]\[ \Delta T_f \approx 1.336 \ ^\circ C \][/tex]
### Conclusion
The freezing point of water decreases by approximately [tex]\(1.336 \ ^\circ C\)[/tex], which means the change in the freezing point is [tex]\(-1.336 \ ^\circ C\)[/tex].
Among the given options, the closest correct answer is:
a. [tex]\(-1.34 ^\circ C\)[/tex]
Your presence in our community is highly appreciated. Keep sharing your insights and solutions. Together, we can build a rich and valuable knowledge resource for everyone. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.