IDNLearn.com: Your one-stop destination for finding reliable answers. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.

Rational Functions and Function Models Graded Assignment

1. Evaluate

The table below gives the change in function values for the functions [tex]$f$[/tex], [tex]$g$[/tex], and [tex]$h$[/tex] for certain intervals of [tex]$x$[/tex]. Consider the information in the table, then answer the questions below.

\begin{tabular}{|r|r|r|r|r|r|}
\hline & [tex]$0 \leq x\ \textless \ 1$[/tex] & [tex]$1 \leq x\ \textless \ 2$[/tex] & [tex]$2 \leq x\ \textless \ 3$[/tex] & [tex]$3 \leq x\ \textless \ 4$[/tex] & [tex]$4 \leq x\ \textless \ 5$[/tex] \\
\hline Change in [tex]$f(x)$[/tex] & 3.1 & 3.8 & 4.0 & 4.2 & 4.4 \\
\hline Change in [tex]$g(x)$[/tex] & 2.1 & 1.9 & -4.0 & -4.1 & -4.1 \\
\hline Change in [tex]$h(x)$[/tex] & 3.3 & 3.1 & 2.9 & 2.7 & 2.5 \\
\hline
\end{tabular}

a) State an appropriate domain and range for [tex]$f(x)$[/tex]. If the domain or range cannot be determined, explain. [10 points]

b) Determine the rate of change for [tex]$f(x)$[/tex] on the sub-interval [tex]$2 \leq x\ \textless \ 5$[/tex]. Circle one. [10 points]
- 0.4
- 4.2
- Cannot be determined

c) Which of the functions is best modeled by a piecewise-linear function with two linear segments with different slopes? [5 points]


Sagot :

Let's solve the question step-by-step as a math teacher.

### Part a) State an appropriate domain and range for [tex]\( f(x) \)[/tex]

To determine the domain for [tex]\( f(x) \)[/tex], we observe the intervals given in the table. The intervals for [tex]\( x \)[/tex] are [tex]\( 0 \leq x < 1 \)[/tex], [tex]\( 1 \leq x < 2 \)[/tex], [tex]\( 2 \leq x < 3 \)[/tex], [tex]\( 3 \leq x < 4 \)[/tex], and [tex]\( 4 \leq x < 5 \)[/tex]. Collectively, these intervals cover [tex]\( 0 \leq x < 5 \)[/tex]. Hence, the domain of [tex]\( f(x) \)[/tex] is:

[tex]\[ \text{Domain of } f(x): \quad 0 \leq x < 5 \][/tex]

To determine the range for [tex]\( f(x) \)[/tex], we need to examine how [tex]\( f(x) \)[/tex] changes across these intervals.

- Let's assume [tex]\( f(0) = 0 \)[/tex] for simplicity.
- From [tex]\( 0 \leq x < 1 \)[/tex], [tex]\( f(x) \)[/tex] increases by 3.1, so [tex]\( f(1) = 3.1 \)[/tex].
- From [tex]\( 1 \leq x < 2 \)[/tex], [tex]\( f(x) \)[/tex] increases by 3.8, so [tex]\( f(2) = 3.1 + 3.8 = 6.9 \)[/tex].
- From [tex]\( 2 \leq x < 3 \)[/tex], [tex]\( f(x) \)[/tex] increases by 4.0, so [tex]\( f(3) = 6.9 + 4.0 = 10.9 \)[/tex].
- From [tex]\( 3 \leq x < 4 \)[/tex], [tex]\( f(x) \)[/tex] increases by 4.2, so [tex]\( f(4) = 10.9 + 4.2 = 15.1 \)[/tex].
- From [tex]\( 4 \leq x < 5 \)[/tex], [tex]\( f(x) \)[/tex] increases by 4.4, so [tex]\( f(5) = 15.1 + 4.4 = 19.5 \)[/tex].

Therefore, the range of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] varies from [tex]\( 0 \leq x < 5 \)[/tex] is:

[tex]\[ \text{Range of } f(x): \quad 0 \leq f(x) \leq 19.5 \][/tex]

### Part b) Determine the rate of change for [tex]\( f(x) \)[/tex] on the sub-interval [tex]\( 2 \leq x < 5 \)[/tex]

To calculate the rate of change for [tex]\( f(x) \)[/tex] on the sub-interval [tex]\( 2 \leq x < 5 \)[/tex], we consider the intervals [tex]\( 2 \leq x < 3 \)[/tex], [tex]\( 3 \leq x < 4 \)[/tex], and [tex]\( 4 \leq x < 5 \)[/tex].

The changes in [tex]\( f(x) \)[/tex] in these intervals are:
- For [tex]\( 2 \leq x < 3 \)[/tex], the change is 4.0.
- For [tex]\( 3 \leq x < 4 \)[/tex], the change is 4.2.
- For [tex]\( 4 \leq x < 5 \)[/tex], the change is 4.4.

The average rate of change in these intervals:
[tex]\[ \text{Rate of Change} = \frac{4.0 + 4.2 + 4.4}{3} = \frac{12.6}{3} = 4.2 \][/tex]

So, the rate of change for [tex]\( f(x) \)[/tex] on the interval [tex]\( 2 \leq x < 5 \)[/tex] is:

[tex]\[ 4.2 \][/tex]

### Part c) Which of the functions is best modeled by a piecewise-linear function with two linear segments with different slopes?

To decide which function is best modeled by a piecewise-linear function with two linear segments with different slopes, we need to analyze the changes in each function over the intervals.

- [tex]\( f(x) \)[/tex] shows consistent positive changes (3.1, 3.8, 4.0, 4.2, 4.4). This indicates a single increasing slope with slight variation but not distinctively two different slopes.
- [tex]\( g(x) \)[/tex] changes as (2.1, 1.9, -4.0, -4.1, -4.1). Initially, there is a positive slope (increasing), followed by a negative slope (decreasing).
- [tex]\( h(x) \)[/tex] changes as (3.3, 3.1, 2.9, 2.7, 2.5). This shows a consistently decreasing rate but not distinctly two linear segments with different slopes.

Thus, [tex]\( g(x) \)[/tex] is best modeled by a piecewise-linear function with two linear segments with different slopes because it shows a distinct increase initially and then a consistent decrease.

In conclusion:
- Domain of [tex]\( f(x) \)[/tex]: [tex]\( 0 \leq x < 5 \)[/tex]
- Range of [tex]\( f(x) \)[/tex]: [tex]\( 0 \leq f(x) \leq 19.5 \)[/tex]
- Rate of change for [tex]\( f(x) \)[/tex] on [tex]\( 2 \leq x < 5 \)[/tex]: [tex]\( 4.2 \)[/tex]
- Function best modeled by a piecewise-linear function with two linear segments with different slopes: [tex]\( g(x) \)[/tex]