Get the information you need from a community of experts on IDNLearn.com. Get prompt and accurate answers to your questions from our experts who are always ready to help.

2. El volumen inicial de una cierta cantidad de gas es de 200 cm³ a una temperatura de 20°C. Calcula el volumen a 90°C si la presión permanece constante.

Sagot :

Para resolver este problema, utilizaremos la Ley de Charles, que establece que el volumen de un gas es directamente proporcional a su temperatura absoluta (en Kelvin) si la presión es constante. La fórmula de la Ley de Charles es:

[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]

donde:
- [tex]\( V_1 \)[/tex] es el volumen inicial,
- [tex]\( T_1 \)[/tex] es la temperatura inicial en Kelvin,
- [tex]\( V_2 \)[/tex] es el volumen final,
- [tex]\( T_2 \)[/tex] es la temperatura final en Kelvin.

Paso a paso:

1. Datos iniciales:
- Volumen inicial [tex]\( V_1 = 200 \, \text{cm}^3 \)[/tex]
- Temperatura inicial [tex]\( T_1 = 20^\circ \text{C} \)[/tex]

2. Convertir las temperaturas a Kelvin:
Para convertir de grados Celsius (°C) a Kelvin (K), utilizamos la fórmula:
[tex]\[ T(K) = T(°C) + 273.15 \][/tex]

Entonces,
[tex]\[ T_1 = 20 + 273.15 = 293.15 \, \text{K} \][/tex]

Temperatura final [tex]\( T_2 = 90^\circ \text{C} \)[/tex]:
[tex]\[ T_2 = 90 + 273.15 = 363.15 \, \text{K} \][/tex]

3. Aplicar la Ley de Charles para encontrar el volumen final [tex]\( V_2 \)[/tex] :
La relación según la Ley de Charles es [tex]\( \frac{V_1}{T_1} = \frac{V_2}{T_2} \)[/tex].

Reorganizamos para resolver [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{T_2}{T_1} \][/tex]

Sustituimos los valores conocidos:
[tex]\[ V_2 = 200 \, \text{cm}^3 \times \frac{363.15 \, \text{K}}{293.15 \, \text{K}} \][/tex]

4. Calcular el volumen final [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = 200 \times \frac{363.15}{293.15} \approx 247.76 \, \text{cm}^3 \][/tex]

Por lo tanto, el volumen del gas a 90°C, manteniendo constante la presión, será aproximadamente [tex]\( 247.76 \, \text{cm}^3 \)[/tex].