Expand your knowledge base with the help of IDNLearn.com's extensive answer archive. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
To determine the energy of one photon of visible radiation with a wavelength of [tex]\( 464.1 \, \text{nm} \)[/tex], we can use the formula for the energy of a photon, which is given by:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck’s constant, which is approximately [tex]\( 6.626 \times 10^{-34} \, \text{Js} \)[/tex].
- [tex]\( c \)[/tex] is the speed of light in a vacuum, which is [tex]\( 3.00 \times 10^8 \, \text{m/s} \)[/tex].
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
1. Convert the wavelength from nanometers to meters:
[tex]\[ \lambda = 464.1 \, \text{nm} = 464.1 \times 10^{-9} \, \text{m} \][/tex]
2. Substitute the given values into the energy equation:
[tex]\[ E = \frac{(6.626 \times 10^{-34} \, \text{Js}) \times (3.00 \times 10^8 \, \text{m/s})}{464.1 \times 10^{-9} \, \text{m}} \][/tex]
3. Calculate the numerator:
[tex]\[ 6.626 \times 10^{-34} \, \text{Js} \times 3.00 \times 10^8 \, \text{m/s} = 1.9878 \times 10^{-25} \, \text{Jm} \][/tex]
4. Divide by the wavelength in meters:
[tex]\[ \frac{1.9878 \times 10^{-25} \, \text{Jm}}{464.1 \times 10^{-9} \, \text{m}} = 4.28313 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the energy of one photon of visible radiation with a wavelength of [tex]\( 464.1 \, \text{nm} \)[/tex] is approximately [tex]\( 4.280 \times 10^{-19} \)[/tex] Joules.
Hence, the correct answer is:
[tex]\[ \boxed{4.280 \times 10^{-19} \, \text{J}} \][/tex]
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck’s constant, which is approximately [tex]\( 6.626 \times 10^{-34} \, \text{Js} \)[/tex].
- [tex]\( c \)[/tex] is the speed of light in a vacuum, which is [tex]\( 3.00 \times 10^8 \, \text{m/s} \)[/tex].
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
1. Convert the wavelength from nanometers to meters:
[tex]\[ \lambda = 464.1 \, \text{nm} = 464.1 \times 10^{-9} \, \text{m} \][/tex]
2. Substitute the given values into the energy equation:
[tex]\[ E = \frac{(6.626 \times 10^{-34} \, \text{Js}) \times (3.00 \times 10^8 \, \text{m/s})}{464.1 \times 10^{-9} \, \text{m}} \][/tex]
3. Calculate the numerator:
[tex]\[ 6.626 \times 10^{-34} \, \text{Js} \times 3.00 \times 10^8 \, \text{m/s} = 1.9878 \times 10^{-25} \, \text{Jm} \][/tex]
4. Divide by the wavelength in meters:
[tex]\[ \frac{1.9878 \times 10^{-25} \, \text{Jm}}{464.1 \times 10^{-9} \, \text{m}} = 4.28313 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the energy of one photon of visible radiation with a wavelength of [tex]\( 464.1 \, \text{nm} \)[/tex] is approximately [tex]\( 4.280 \times 10^{-19} \)[/tex] Joules.
Hence, the correct answer is:
[tex]\[ \boxed{4.280 \times 10^{-19} \, \text{J}} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.