IDNLearn.com: Your go-to resource for finding precise and accurate answers. Join our knowledgeable community and get detailed, reliable answers to all your questions.
Sagot :
To find the exact values of the trigonometric functions given the conditions [tex]\( \sin \alpha = \frac{4}{5} \)[/tex] where [tex]\( 0 < \alpha < \frac{\pi}{2} \)[/tex] (meaning [tex]\(\alpha\)[/tex] is in the first quadrant) and [tex]\( \cos \beta = \frac{4\sqrt{97}}{97} \)[/tex] where [tex]\(-\frac{\pi}{2} < \beta < 0\)[/tex] (meaning [tex]\(\beta\)[/tex] is in the fourth quadrant), we will use the angle addition and subtraction formulas.
Step-by-Step Solution:
Firstly, let's determine [tex]\(\cos \alpha\)[/tex] and [tex]\(\sin \beta\)[/tex]:
1. Calculate [tex]\(\cos \alpha\)[/tex]:
We know [tex]\( \sin^2 \alpha + \cos^2 \alpha = 1 \)[/tex].
Given [tex]\( \sin \alpha = \frac{4}{5} \)[/tex],
[tex]\[ \sin^2 \alpha = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \][/tex]
Thus,
[tex]\[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{16}{25} = \frac{9}{25} \][/tex]
Since [tex]\( 0 < \alpha < \frac{\pi}{2} \)[/tex],
[tex]\[ \cos \alpha = \sqrt{\frac{9}{25}} = \frac{3}{5} \][/tex]
2. Calculate [tex]\(\sin \beta\)[/tex]:
We know [tex]\( \sin^2 \beta + \cos^2 \beta = 1 \)[/tex].
Given [tex]\( \cos \beta = \frac{4\sqrt{97}}{97} \)[/tex],
[tex]\[ \cos^2 \beta = \left(\frac{4\sqrt{97}}{97}\right)^2 = \frac{16 \cdot 97}{97^2} = \frac{16}{97} \][/tex]
Thus,
[tex]\[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \frac{16}{97} = \frac{81}{97} \][/tex]
Since [tex]\( -\frac{\pi}{2} < \beta < 0 \)[/tex], [tex]\(\beta\)[/tex] is in the fourth quadrant, where sine is negative,
[tex]\[ \sin \beta = -\sqrt{\frac{81}{97}} = -\frac{9}{\sqrt{97}} \][/tex]
Now we proceed to find the required values:
(a) [tex]\(\sin (\alpha + \beta)\)[/tex]:
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \sin (\alpha + \beta) = \left(\frac{4}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) + \left(\frac{3}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \sin (\alpha + \beta) \approx -0.22337615632939606 \][/tex]
(b) [tex]\(\cos (\alpha + \beta)\)[/tex]:
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \cos (\alpha + \beta) = \left(\frac{3}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) - \left(\frac{4}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \cos (\alpha + \beta) \approx 0.9747323185282742 \][/tex]
(c) [tex]\(\sin (\alpha - \beta)\)[/tex]:
[tex]\[ \sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \sin (\alpha - \beta) = \left(\frac{4}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) - \left(\frac{3}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \sin (\alpha - \beta) \approx 0.8731977020149122 \][/tex]
(d) [tex]\(\tan (\alpha - \beta)\)[/tex]:
We know,
[tex]\[ \tan (\alpha - \beta) = \frac{\sin (\alpha - \beta)}{\cos (\alpha - \beta)} \][/tex]
Using the values from parts (b) and (c),
[tex]\[ \cos (\alpha - \beta) = \cos (\alpha + \beta) \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\sin (\alpha - \beta)}{\cos (\alpha + \beta)} = \frac{0.8731977020149122}{0.9747323185282742} \][/tex]
After simplification, we get
[tex]\[ \tan (\alpha - \beta) \approx 0.8958333333333331 \][/tex]
Thus, the exact values are:
(a) [tex]\(\sin (\alpha + \beta) \approx -0.22337615632939606\)[/tex]
(b) [tex]\(\cos (\alpha + \beta) \approx 0.9747323185282742\)[/tex]
(c) [tex]\(\sin (\alpha - \beta) \approx 0.8731977020149122\)[/tex]
(d) [tex]\(\tan (\alpha - \beta) \approx 0.8958333333333331\)[/tex]
Step-by-Step Solution:
Firstly, let's determine [tex]\(\cos \alpha\)[/tex] and [tex]\(\sin \beta\)[/tex]:
1. Calculate [tex]\(\cos \alpha\)[/tex]:
We know [tex]\( \sin^2 \alpha + \cos^2 \alpha = 1 \)[/tex].
Given [tex]\( \sin \alpha = \frac{4}{5} \)[/tex],
[tex]\[ \sin^2 \alpha = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \][/tex]
Thus,
[tex]\[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{16}{25} = \frac{9}{25} \][/tex]
Since [tex]\( 0 < \alpha < \frac{\pi}{2} \)[/tex],
[tex]\[ \cos \alpha = \sqrt{\frac{9}{25}} = \frac{3}{5} \][/tex]
2. Calculate [tex]\(\sin \beta\)[/tex]:
We know [tex]\( \sin^2 \beta + \cos^2 \beta = 1 \)[/tex].
Given [tex]\( \cos \beta = \frac{4\sqrt{97}}{97} \)[/tex],
[tex]\[ \cos^2 \beta = \left(\frac{4\sqrt{97}}{97}\right)^2 = \frac{16 \cdot 97}{97^2} = \frac{16}{97} \][/tex]
Thus,
[tex]\[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \frac{16}{97} = \frac{81}{97} \][/tex]
Since [tex]\( -\frac{\pi}{2} < \beta < 0 \)[/tex], [tex]\(\beta\)[/tex] is in the fourth quadrant, where sine is negative,
[tex]\[ \sin \beta = -\sqrt{\frac{81}{97}} = -\frac{9}{\sqrt{97}} \][/tex]
Now we proceed to find the required values:
(a) [tex]\(\sin (\alpha + \beta)\)[/tex]:
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \sin (\alpha + \beta) = \left(\frac{4}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) + \left(\frac{3}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \sin (\alpha + \beta) \approx -0.22337615632939606 \][/tex]
(b) [tex]\(\cos (\alpha + \beta)\)[/tex]:
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \cos (\alpha + \beta) = \left(\frac{3}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) - \left(\frac{4}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \cos (\alpha + \beta) \approx 0.9747323185282742 \][/tex]
(c) [tex]\(\sin (\alpha - \beta)\)[/tex]:
[tex]\[ \sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \sin (\alpha - \beta) = \left(\frac{4}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) - \left(\frac{3}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \sin (\alpha - \beta) \approx 0.8731977020149122 \][/tex]
(d) [tex]\(\tan (\alpha - \beta)\)[/tex]:
We know,
[tex]\[ \tan (\alpha - \beta) = \frac{\sin (\alpha - \beta)}{\cos (\alpha - \beta)} \][/tex]
Using the values from parts (b) and (c),
[tex]\[ \cos (\alpha - \beta) = \cos (\alpha + \beta) \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\sin (\alpha - \beta)}{\cos (\alpha + \beta)} = \frac{0.8731977020149122}{0.9747323185282742} \][/tex]
After simplification, we get
[tex]\[ \tan (\alpha - \beta) \approx 0.8958333333333331 \][/tex]
Thus, the exact values are:
(a) [tex]\(\sin (\alpha + \beta) \approx -0.22337615632939606\)[/tex]
(b) [tex]\(\cos (\alpha + \beta) \approx 0.9747323185282742\)[/tex]
(c) [tex]\(\sin (\alpha - \beta) \approx 0.8731977020149122\)[/tex]
(d) [tex]\(\tan (\alpha - \beta) \approx 0.8958333333333331\)[/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.