IDNLearn.com offers expert insights and community wisdom to answer your queries. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.
Sagot :
Let's find out whether [tex]$\triangle ABC$[/tex] is an isosceles triangle or a right triangle by computing the lengths of its sides and checking the necessary conditions for isosceles and right triangles.
First, let's determine the lengths of the sides [tex]\( \overline{AB} \)[/tex], [tex]\( \overline{BC} \)[/tex], and [tex]\( \overline{AC} \)[/tex].
### Length of [tex]\( \overline{AB} \)[/tex]
The points [tex]$A$[/tex] and [tex]$B$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( B(4,4) \)[/tex].
The distance formula is:
[tex]\[ AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$B$[/tex]:
[tex]\[ AB = \sqrt{(4 - 2)^2 + (4 - 0)^2} = \sqrt{(2)^2 + (4)^2} = \sqrt{4 + 16} = \sqrt{20} \approx 4.472 \][/tex]
### Length of [tex]\( \overline{BC} \)[/tex]
The points [tex]$B$[/tex] and [tex]$C$[/tex] are given as [tex]\( B(4,4) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} \][/tex]
Substituting the coordinates of [tex]$B$[/tex] and [tex]$C$[/tex]:
[tex]\[ BC = \sqrt{(6 - 4)^2 + (3 - 4)^2} = \sqrt{(2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} \approx 2.236 \][/tex]
### Length of [tex]\( \overline{AC} \)[/tex]
The points [tex]$A$[/tex] and [tex]$C$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$C$[/tex]:
[tex]\[ AC = \sqrt{(6 - 2)^2 + (3 - 0)^2} = \sqrt{(4)^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
### Checking for Isosceles Triangle
To check if [tex]$\triangle ABC$[/tex] is isosceles, we need to see if any two sides are of equal length.
We have:
[tex]\[ AB \approx 4.472, \quad BC \approx 2.236, \quad AC = 5 \][/tex]
Since none of the lengths are approximately equal, [tex]\(\triangle ABC\)[/tex] is not isosceles.
### Checking for Right Triangle
To check if [tex]$\triangle ABC$[/tex] is a right triangle, we need to use the Pythagorean theorem and verify if any combination of sides satisfies:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Let's test the following combinations:
1. [tex]\(AB^2 + BC^2 \approx AC^2\)[/tex]:
[tex]\[ (4.472)^2 + (2.236)^2 \approx 5^2 \][/tex]
[tex]\[ 20 + 5 \approx 25 \quad \text{(True)} \][/tex]
Since [tex]\(AB^2 + BC^2 = AC^2\)[/tex], we confirm that [tex]\(\triangle ABC\)[/tex] is a right triangle.
Therefore, Verna is correct because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex].
Answer: Verna, because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex]
First, let's determine the lengths of the sides [tex]\( \overline{AB} \)[/tex], [tex]\( \overline{BC} \)[/tex], and [tex]\( \overline{AC} \)[/tex].
### Length of [tex]\( \overline{AB} \)[/tex]
The points [tex]$A$[/tex] and [tex]$B$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( B(4,4) \)[/tex].
The distance formula is:
[tex]\[ AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$B$[/tex]:
[tex]\[ AB = \sqrt{(4 - 2)^2 + (4 - 0)^2} = \sqrt{(2)^2 + (4)^2} = \sqrt{4 + 16} = \sqrt{20} \approx 4.472 \][/tex]
### Length of [tex]\( \overline{BC} \)[/tex]
The points [tex]$B$[/tex] and [tex]$C$[/tex] are given as [tex]\( B(4,4) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} \][/tex]
Substituting the coordinates of [tex]$B$[/tex] and [tex]$C$[/tex]:
[tex]\[ BC = \sqrt{(6 - 4)^2 + (3 - 4)^2} = \sqrt{(2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} \approx 2.236 \][/tex]
### Length of [tex]\( \overline{AC} \)[/tex]
The points [tex]$A$[/tex] and [tex]$C$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$C$[/tex]:
[tex]\[ AC = \sqrt{(6 - 2)^2 + (3 - 0)^2} = \sqrt{(4)^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
### Checking for Isosceles Triangle
To check if [tex]$\triangle ABC$[/tex] is isosceles, we need to see if any two sides are of equal length.
We have:
[tex]\[ AB \approx 4.472, \quad BC \approx 2.236, \quad AC = 5 \][/tex]
Since none of the lengths are approximately equal, [tex]\(\triangle ABC\)[/tex] is not isosceles.
### Checking for Right Triangle
To check if [tex]$\triangle ABC$[/tex] is a right triangle, we need to use the Pythagorean theorem and verify if any combination of sides satisfies:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Let's test the following combinations:
1. [tex]\(AB^2 + BC^2 \approx AC^2\)[/tex]:
[tex]\[ (4.472)^2 + (2.236)^2 \approx 5^2 \][/tex]
[tex]\[ 20 + 5 \approx 25 \quad \text{(True)} \][/tex]
Since [tex]\(AB^2 + BC^2 = AC^2\)[/tex], we confirm that [tex]\(\triangle ABC\)[/tex] is a right triangle.
Therefore, Verna is correct because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex].
Answer: Verna, because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.