IDNLearn.com offers a user-friendly platform for finding and sharing knowledge. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.
Sagot :
Sure, let's solve the quadratic inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] step-by-step.
### Step 1: Formulate the corresponding quadratic equation
To solve the inequality, we first need to find the roots of the corresponding quadratic equation [tex]\(2x^2 + 5x - 3 = 0\)[/tex]. The roots will help us understand the intervals where the inequality holds true.
### Step 2: Use the quadratic formula
Recall that the quadratic formula to find the roots [tex]\(x\)[/tex] of the equation [tex]\(ax^2 + bx + c = 0\)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -3\)[/tex].
### Step 3: Calculate the discriminant
The discriminant (the part under the square root in the quadratic formula) is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = 5^2 - 4(2)(-3) \][/tex]
[tex]\[ \Delta = 25 + 24 \][/tex]
[tex]\[ \Delta = 49 \][/tex]
### Step 4: Find the roots of the quadratic equation
Now, we can find the roots using the quadratic formula:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values:
[tex]\[ x_1 = \frac{-5 + \sqrt{49}}{2 \cdot 2} \][/tex]
[tex]\[ x_1 = \frac{-5 + 7}{4} \][/tex]
[tex]\[ x_1 = \frac{2}{4} \][/tex]
[tex]\[ x_1 = 0.5 \][/tex]
And for [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = \frac{-5 - \sqrt{49}}{2 \cdot 2} \][/tex]
[tex]\[ x_2 = \frac{-5 - 7}{4} \][/tex]
[tex]\[ x_2 = \frac{-12}{4} \][/tex]
[tex]\[ x_2 = -3 \][/tex]
### Step 5: Determine the intervals
The quadratic equation [tex]\(2x^2 + 5x - 3 = 0\)[/tex] has roots at [tex]\(x = 0.5\)[/tex] and [tex]\(x = -3\)[/tex]. To determine where the inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] holds, we need to consider the sign of the quadratic expression in the intervals defined by these roots:
1. [tex]\( x < -3 \)[/tex]
2. [tex]\( -3 < x < 0.5 \)[/tex]
3. [tex]\( x > 0.5 \)[/tex]
### Step 6: Test the intervals
We need to test each interval to see where the inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] holds true.
- For [tex]\(x < -3\)[/tex]:
Let's take [tex]\(x = -4\)[/tex]:
[tex]\[ 2(-4)^2 + 5(-4) - 3 = 2(16) - 20 - 3 = 32 - 20 - 3 = 9 > 0 \][/tex]
Thus, the inequality holds for [tex]\(x < -3\)[/tex].
- For [tex]\(-3 < x < 0.5\)[/tex]:
Let's take [tex]\(x = 0\)[/tex]:
[tex]\[ 2(0)^2 + 5(0) - 3 = -3 < 0 \][/tex]
Thus, the inequality does not hold for [tex]\(-3 < x < 0.5\)[/tex].
- For [tex]\(x > 0.5\)[/tex]:
Let's take [tex]\(x = 1\)[/tex]:
[tex]\[ 2(1)^2 + 5(1) - 3 = 2 + 5 - 3 = 4 > 0 \][/tex]
Thus, the inequality holds for [tex]\(x > 0.5\)[/tex].
### Conclusion
The quadratic inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] is satisfied when [tex]\(x < -3\)[/tex] or [tex]\(x > 0.5\)[/tex]. Therefore, the solution to the inequality is:
[tex]\[ x \in (-\infty, -3) \cup (0.5, \infty) \][/tex]
### Step 1: Formulate the corresponding quadratic equation
To solve the inequality, we first need to find the roots of the corresponding quadratic equation [tex]\(2x^2 + 5x - 3 = 0\)[/tex]. The roots will help us understand the intervals where the inequality holds true.
### Step 2: Use the quadratic formula
Recall that the quadratic formula to find the roots [tex]\(x\)[/tex] of the equation [tex]\(ax^2 + bx + c = 0\)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -3\)[/tex].
### Step 3: Calculate the discriminant
The discriminant (the part under the square root in the quadratic formula) is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = 5^2 - 4(2)(-3) \][/tex]
[tex]\[ \Delta = 25 + 24 \][/tex]
[tex]\[ \Delta = 49 \][/tex]
### Step 4: Find the roots of the quadratic equation
Now, we can find the roots using the quadratic formula:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values:
[tex]\[ x_1 = \frac{-5 + \sqrt{49}}{2 \cdot 2} \][/tex]
[tex]\[ x_1 = \frac{-5 + 7}{4} \][/tex]
[tex]\[ x_1 = \frac{2}{4} \][/tex]
[tex]\[ x_1 = 0.5 \][/tex]
And for [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = \frac{-5 - \sqrt{49}}{2 \cdot 2} \][/tex]
[tex]\[ x_2 = \frac{-5 - 7}{4} \][/tex]
[tex]\[ x_2 = \frac{-12}{4} \][/tex]
[tex]\[ x_2 = -3 \][/tex]
### Step 5: Determine the intervals
The quadratic equation [tex]\(2x^2 + 5x - 3 = 0\)[/tex] has roots at [tex]\(x = 0.5\)[/tex] and [tex]\(x = -3\)[/tex]. To determine where the inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] holds, we need to consider the sign of the quadratic expression in the intervals defined by these roots:
1. [tex]\( x < -3 \)[/tex]
2. [tex]\( -3 < x < 0.5 \)[/tex]
3. [tex]\( x > 0.5 \)[/tex]
### Step 6: Test the intervals
We need to test each interval to see where the inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] holds true.
- For [tex]\(x < -3\)[/tex]:
Let's take [tex]\(x = -4\)[/tex]:
[tex]\[ 2(-4)^2 + 5(-4) - 3 = 2(16) - 20 - 3 = 32 - 20 - 3 = 9 > 0 \][/tex]
Thus, the inequality holds for [tex]\(x < -3\)[/tex].
- For [tex]\(-3 < x < 0.5\)[/tex]:
Let's take [tex]\(x = 0\)[/tex]:
[tex]\[ 2(0)^2 + 5(0) - 3 = -3 < 0 \][/tex]
Thus, the inequality does not hold for [tex]\(-3 < x < 0.5\)[/tex].
- For [tex]\(x > 0.5\)[/tex]:
Let's take [tex]\(x = 1\)[/tex]:
[tex]\[ 2(1)^2 + 5(1) - 3 = 2 + 5 - 3 = 4 > 0 \][/tex]
Thus, the inequality holds for [tex]\(x > 0.5\)[/tex].
### Conclusion
The quadratic inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] is satisfied when [tex]\(x < -3\)[/tex] or [tex]\(x > 0.5\)[/tex]. Therefore, the solution to the inequality is:
[tex]\[ x \in (-\infty, -3) \cup (0.5, \infty) \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.