Connect with experts and get insightful answers on IDNLearn.com. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Sure, let's solve the quadratic inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] step-by-step.
### Step 1: Formulate the corresponding quadratic equation
To solve the inequality, we first need to find the roots of the corresponding quadratic equation [tex]\(2x^2 + 5x - 3 = 0\)[/tex]. The roots will help us understand the intervals where the inequality holds true.
### Step 2: Use the quadratic formula
Recall that the quadratic formula to find the roots [tex]\(x\)[/tex] of the equation [tex]\(ax^2 + bx + c = 0\)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -3\)[/tex].
### Step 3: Calculate the discriminant
The discriminant (the part under the square root in the quadratic formula) is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = 5^2 - 4(2)(-3) \][/tex]
[tex]\[ \Delta = 25 + 24 \][/tex]
[tex]\[ \Delta = 49 \][/tex]
### Step 4: Find the roots of the quadratic equation
Now, we can find the roots using the quadratic formula:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values:
[tex]\[ x_1 = \frac{-5 + \sqrt{49}}{2 \cdot 2} \][/tex]
[tex]\[ x_1 = \frac{-5 + 7}{4} \][/tex]
[tex]\[ x_1 = \frac{2}{4} \][/tex]
[tex]\[ x_1 = 0.5 \][/tex]
And for [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = \frac{-5 - \sqrt{49}}{2 \cdot 2} \][/tex]
[tex]\[ x_2 = \frac{-5 - 7}{4} \][/tex]
[tex]\[ x_2 = \frac{-12}{4} \][/tex]
[tex]\[ x_2 = -3 \][/tex]
### Step 5: Determine the intervals
The quadratic equation [tex]\(2x^2 + 5x - 3 = 0\)[/tex] has roots at [tex]\(x = 0.5\)[/tex] and [tex]\(x = -3\)[/tex]. To determine where the inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] holds, we need to consider the sign of the quadratic expression in the intervals defined by these roots:
1. [tex]\( x < -3 \)[/tex]
2. [tex]\( -3 < x < 0.5 \)[/tex]
3. [tex]\( x > 0.5 \)[/tex]
### Step 6: Test the intervals
We need to test each interval to see where the inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] holds true.
- For [tex]\(x < -3\)[/tex]:
Let's take [tex]\(x = -4\)[/tex]:
[tex]\[ 2(-4)^2 + 5(-4) - 3 = 2(16) - 20 - 3 = 32 - 20 - 3 = 9 > 0 \][/tex]
Thus, the inequality holds for [tex]\(x < -3\)[/tex].
- For [tex]\(-3 < x < 0.5\)[/tex]:
Let's take [tex]\(x = 0\)[/tex]:
[tex]\[ 2(0)^2 + 5(0) - 3 = -3 < 0 \][/tex]
Thus, the inequality does not hold for [tex]\(-3 < x < 0.5\)[/tex].
- For [tex]\(x > 0.5\)[/tex]:
Let's take [tex]\(x = 1\)[/tex]:
[tex]\[ 2(1)^2 + 5(1) - 3 = 2 + 5 - 3 = 4 > 0 \][/tex]
Thus, the inequality holds for [tex]\(x > 0.5\)[/tex].
### Conclusion
The quadratic inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] is satisfied when [tex]\(x < -3\)[/tex] or [tex]\(x > 0.5\)[/tex]. Therefore, the solution to the inequality is:
[tex]\[ x \in (-\infty, -3) \cup (0.5, \infty) \][/tex]
### Step 1: Formulate the corresponding quadratic equation
To solve the inequality, we first need to find the roots of the corresponding quadratic equation [tex]\(2x^2 + 5x - 3 = 0\)[/tex]. The roots will help us understand the intervals where the inequality holds true.
### Step 2: Use the quadratic formula
Recall that the quadratic formula to find the roots [tex]\(x\)[/tex] of the equation [tex]\(ax^2 + bx + c = 0\)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -3\)[/tex].
### Step 3: Calculate the discriminant
The discriminant (the part under the square root in the quadratic formula) is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = 5^2 - 4(2)(-3) \][/tex]
[tex]\[ \Delta = 25 + 24 \][/tex]
[tex]\[ \Delta = 49 \][/tex]
### Step 4: Find the roots of the quadratic equation
Now, we can find the roots using the quadratic formula:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values:
[tex]\[ x_1 = \frac{-5 + \sqrt{49}}{2 \cdot 2} \][/tex]
[tex]\[ x_1 = \frac{-5 + 7}{4} \][/tex]
[tex]\[ x_1 = \frac{2}{4} \][/tex]
[tex]\[ x_1 = 0.5 \][/tex]
And for [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = \frac{-5 - \sqrt{49}}{2 \cdot 2} \][/tex]
[tex]\[ x_2 = \frac{-5 - 7}{4} \][/tex]
[tex]\[ x_2 = \frac{-12}{4} \][/tex]
[tex]\[ x_2 = -3 \][/tex]
### Step 5: Determine the intervals
The quadratic equation [tex]\(2x^2 + 5x - 3 = 0\)[/tex] has roots at [tex]\(x = 0.5\)[/tex] and [tex]\(x = -3\)[/tex]. To determine where the inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] holds, we need to consider the sign of the quadratic expression in the intervals defined by these roots:
1. [tex]\( x < -3 \)[/tex]
2. [tex]\( -3 < x < 0.5 \)[/tex]
3. [tex]\( x > 0.5 \)[/tex]
### Step 6: Test the intervals
We need to test each interval to see where the inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] holds true.
- For [tex]\(x < -3\)[/tex]:
Let's take [tex]\(x = -4\)[/tex]:
[tex]\[ 2(-4)^2 + 5(-4) - 3 = 2(16) - 20 - 3 = 32 - 20 - 3 = 9 > 0 \][/tex]
Thus, the inequality holds for [tex]\(x < -3\)[/tex].
- For [tex]\(-3 < x < 0.5\)[/tex]:
Let's take [tex]\(x = 0\)[/tex]:
[tex]\[ 2(0)^2 + 5(0) - 3 = -3 < 0 \][/tex]
Thus, the inequality does not hold for [tex]\(-3 < x < 0.5\)[/tex].
- For [tex]\(x > 0.5\)[/tex]:
Let's take [tex]\(x = 1\)[/tex]:
[tex]\[ 2(1)^2 + 5(1) - 3 = 2 + 5 - 3 = 4 > 0 \][/tex]
Thus, the inequality holds for [tex]\(x > 0.5\)[/tex].
### Conclusion
The quadratic inequality [tex]\(2x^2 + 5x - 3 > 0\)[/tex] is satisfied when [tex]\(x < -3\)[/tex] or [tex]\(x > 0.5\)[/tex]. Therefore, the solution to the inequality is:
[tex]\[ x \in (-\infty, -3) \cup (0.5, \infty) \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.