IDNLearn.com: Where your questions meet expert advice and community support. Ask anything and receive immediate, well-informed answers from our dedicated community of experts.
Sagot :
Para calcular la fuerza entre dos cargas puntuales en el vacío, utilizamos la ley de Coulomb, que se expresa como:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
Donde:
- [tex]\( F \)[/tex] es la magnitud de la fuerza entre las dos cargas.
- [tex]\( k \)[/tex] es la constante de Coulomb, [tex]\( k \approx 8.9875 \times 10^9 \, N \cdot m^2 \cdot C^{-2} \)[/tex].
- [tex]\( q_1 \)[/tex] y [tex]\( q_2 \)[/tex] son las magnitudes de las dos cargas puntuales.
- [tex]\( r \)[/tex] es la distancia entre las dos cargas.
Dado:
- [tex]\( q_1 = 3 \times 10^6 \, C \)[/tex]
- [tex]\( q_2 = 4 \times 10^{-5} \, C \)[/tex]
- [tex]\( r = 0.5 \, m \)[/tex]
Sigamos los pasos para calcular la fuerza:
1. Plug in the given values into Coulomb's law.
[tex]\[ q_1 = 3 \times 10^6 \, C \][/tex]
[tex]\[ q_2 = 4 \times 10^{-5} \, C \][/tex]
[tex]\[ r = 0.5 \, m \][/tex]
[tex]\[ k \approx 8.9875 \times 10^9 \, N \cdot m^2 \cdot C^{-2} \][/tex]
2. Substitute these values into the formula:
[tex]\[ F = 8.9875 \times 10^9 \frac{|3 \times 10^6 \cdot 4 \times 10^{-5}|}{(0.5)^2} \][/tex]
3. Calculate the product of the charges:
[tex]\[ |3 \times 10^6 \cdot 4 \times 10^{-5}| = 3 \times 10^6 \cdot 4 \times 10^{-5} \][/tex]
[tex]\[ = 12 \times 10^1 \, C^2 \][/tex]
[tex]\[ = 1.2 \times 10^2 \, C^2 \][/tex]
4. Square the distance:
[tex]\[ (0.5)^2 = 0.25 \, m^2 \][/tex]
5. Calculate the force:
[tex]\[ F = 8.9875 \times 10^9 \frac{1.2 \times 10^2}{0.25} \, N \][/tex]
6. Simplify the fraction:
[tex]\[ \frac{1.2 \times 10^2}{0.25} = 4.8 \times 10^2 \, \text{N} \][/tex]
7. Finally, multiply by [tex]\( k \)[/tex]:
[tex]\[ F = 8.9875 \times 10^9 \times 4.8 \times 10^2 \, N \][/tex]
This gives:
[tex]\[ F \approx 4314024857936.7246 \, N \][/tex]
Por lo tanto, la magnitud de la fuerza entre las cargas es aproximadamente [tex]\( 4314024857936.7246 \)[/tex] Newtons (N).
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
Donde:
- [tex]\( F \)[/tex] es la magnitud de la fuerza entre las dos cargas.
- [tex]\( k \)[/tex] es la constante de Coulomb, [tex]\( k \approx 8.9875 \times 10^9 \, N \cdot m^2 \cdot C^{-2} \)[/tex].
- [tex]\( q_1 \)[/tex] y [tex]\( q_2 \)[/tex] son las magnitudes de las dos cargas puntuales.
- [tex]\( r \)[/tex] es la distancia entre las dos cargas.
Dado:
- [tex]\( q_1 = 3 \times 10^6 \, C \)[/tex]
- [tex]\( q_2 = 4 \times 10^{-5} \, C \)[/tex]
- [tex]\( r = 0.5 \, m \)[/tex]
Sigamos los pasos para calcular la fuerza:
1. Plug in the given values into Coulomb's law.
[tex]\[ q_1 = 3 \times 10^6 \, C \][/tex]
[tex]\[ q_2 = 4 \times 10^{-5} \, C \][/tex]
[tex]\[ r = 0.5 \, m \][/tex]
[tex]\[ k \approx 8.9875 \times 10^9 \, N \cdot m^2 \cdot C^{-2} \][/tex]
2. Substitute these values into the formula:
[tex]\[ F = 8.9875 \times 10^9 \frac{|3 \times 10^6 \cdot 4 \times 10^{-5}|}{(0.5)^2} \][/tex]
3. Calculate the product of the charges:
[tex]\[ |3 \times 10^6 \cdot 4 \times 10^{-5}| = 3 \times 10^6 \cdot 4 \times 10^{-5} \][/tex]
[tex]\[ = 12 \times 10^1 \, C^2 \][/tex]
[tex]\[ = 1.2 \times 10^2 \, C^2 \][/tex]
4. Square the distance:
[tex]\[ (0.5)^2 = 0.25 \, m^2 \][/tex]
5. Calculate the force:
[tex]\[ F = 8.9875 \times 10^9 \frac{1.2 \times 10^2}{0.25} \, N \][/tex]
6. Simplify the fraction:
[tex]\[ \frac{1.2 \times 10^2}{0.25} = 4.8 \times 10^2 \, \text{N} \][/tex]
7. Finally, multiply by [tex]\( k \)[/tex]:
[tex]\[ F = 8.9875 \times 10^9 \times 4.8 \times 10^2 \, N \][/tex]
This gives:
[tex]\[ F \approx 4314024857936.7246 \, N \][/tex]
Por lo tanto, la magnitud de la fuerza entre las cargas es aproximadamente [tex]\( 4314024857936.7246 \)[/tex] Newtons (N).
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.