Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
We are given:
- The standard Gibbs free energy change, [tex]\(\Delta G^\circ = 25.79 \text{ kJ/mol}\)[/tex].
- The temperature, [tex]\(T = 298 \text{ K}\)[/tex].
- The universal gas constant, [tex]\(R = 8.314 \text{ J/(mol·K)}\)[/tex].
First, we need to convert [tex]\(\Delta G^\circ\)[/tex] from kJ/mol to J/mol because the gas constant [tex]\(R\)[/tex] is in units of J/(mol·K).
[tex]\[ \Delta G^\circ = 25.79 \text{ kJ/mol} \times 1000 \frac{\text{J}}{\text{kJ}} = 25790 \text{ J/mol} \][/tex]
Next, we use the relationship between the Gibbs free energy change and the equilibrium constant [tex]\(K\)[/tex], which is given by the equation:
[tex]\[ \Delta G = -RT \ln K \][/tex]
We need to solve for [tex]\(K\)[/tex]. Rearranging the equation gives:
[tex]\[ K = e^{-\Delta G / (RT)} \][/tex]
Substituting in the known values:
[tex]\[ K = e^{-25790 \text{ J/mol} / (8.314 \text{ J/(mol·K)} \times 298 \text{ K})} \][/tex]
Through proper calculation, we find:
[tex]\[ K \approx 3.0148220087706008 \times 10^{-5} \][/tex]
Therefore, the value of the equilibrium constant [tex]\(K\)[/tex] for the given reaction at 298 K is approximately:
[tex]\[ K = 3.0148220087706008 \times 10^{-5} \][/tex]
We are given:
- The standard Gibbs free energy change, [tex]\(\Delta G^\circ = 25.79 \text{ kJ/mol}\)[/tex].
- The temperature, [tex]\(T = 298 \text{ K}\)[/tex].
- The universal gas constant, [tex]\(R = 8.314 \text{ J/(mol·K)}\)[/tex].
First, we need to convert [tex]\(\Delta G^\circ\)[/tex] from kJ/mol to J/mol because the gas constant [tex]\(R\)[/tex] is in units of J/(mol·K).
[tex]\[ \Delta G^\circ = 25.79 \text{ kJ/mol} \times 1000 \frac{\text{J}}{\text{kJ}} = 25790 \text{ J/mol} \][/tex]
Next, we use the relationship between the Gibbs free energy change and the equilibrium constant [tex]\(K\)[/tex], which is given by the equation:
[tex]\[ \Delta G = -RT \ln K \][/tex]
We need to solve for [tex]\(K\)[/tex]. Rearranging the equation gives:
[tex]\[ K = e^{-\Delta G / (RT)} \][/tex]
Substituting in the known values:
[tex]\[ K = e^{-25790 \text{ J/mol} / (8.314 \text{ J/(mol·K)} \times 298 \text{ K})} \][/tex]
Through proper calculation, we find:
[tex]\[ K \approx 3.0148220087706008 \times 10^{-5} \][/tex]
Therefore, the value of the equilibrium constant [tex]\(K\)[/tex] for the given reaction at 298 K is approximately:
[tex]\[ K = 3.0148220087706008 \times 10^{-5} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.