IDNLearn.com connects you with a community of experts ready to answer your questions. Discover detailed answers to your questions with our extensive database of expert knowledge.
Sagot :
To determine the force [tex]\( F \)[/tex] between two charges, [tex]\( Q_1 \)[/tex] and [tex]\( Q_2 \)[/tex], separated by a distance [tex]\( r \)[/tex], we use Coulomb's law. The formula for Coulomb's law is:
[tex]\[ F = k \frac{Q_1 Q_2}{r^2} \][/tex]
Where:
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \)[/tex]
- [tex]\( Q_1 \)[/tex] is the first charge, [tex]\( 3.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( Q_2 \)[/tex] is the second charge, [tex]\( 4.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the charges, [tex]\( 3.0 \, \text{m} \)[/tex]
Let's substitute these values into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{(3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C})}{(3.0 \, \text{m})^2} \][/tex]
First, let's calculate the product of the charges:
[tex]\[ Q_1 \times Q_2 = (3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C}) = 12.0 \times 10^{-10} \, \text{C}^2 \][/tex]
Next, calculate the square of the distance:
[tex]\[ r^2 = (3.0 \, \text{m})^2 = 9.0 \, \text{m}^2 \][/tex]
Now, substitute these results back into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} \][/tex]
Perform the division inside the fraction:
[tex]\[ \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} = 1.333... \times 10^{-10} \, \text{C}^2/\text{m}^2 \approx 1.34 \times 10^{-10} \, \text{C}^2/\text{m}^2 \][/tex]
Then multiply by Coulomb's constant [tex]\( k \)[/tex]:
[tex]\[ F = (9.00 \times 10^9) \times 1.34 \times 10^{-10} = 1.206 \times 10^0 \, \text{N} \approx 1.2 \, \text{N} \][/tex]
So, the force [tex]\( F \)[/tex] between the two charges, with the provided values, is approximately [tex]\( 1.2 \, \text{N} \)[/tex]. From the given options, this matches closest to:
[tex]\[ \boxed{1.0 \, \text{N}} \][/tex]
[tex]\[ F = k \frac{Q_1 Q_2}{r^2} \][/tex]
Where:
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \)[/tex]
- [tex]\( Q_1 \)[/tex] is the first charge, [tex]\( 3.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( Q_2 \)[/tex] is the second charge, [tex]\( 4.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the charges, [tex]\( 3.0 \, \text{m} \)[/tex]
Let's substitute these values into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{(3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C})}{(3.0 \, \text{m})^2} \][/tex]
First, let's calculate the product of the charges:
[tex]\[ Q_1 \times Q_2 = (3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C}) = 12.0 \times 10^{-10} \, \text{C}^2 \][/tex]
Next, calculate the square of the distance:
[tex]\[ r^2 = (3.0 \, \text{m})^2 = 9.0 \, \text{m}^2 \][/tex]
Now, substitute these results back into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} \][/tex]
Perform the division inside the fraction:
[tex]\[ \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} = 1.333... \times 10^{-10} \, \text{C}^2/\text{m}^2 \approx 1.34 \times 10^{-10} \, \text{C}^2/\text{m}^2 \][/tex]
Then multiply by Coulomb's constant [tex]\( k \)[/tex]:
[tex]\[ F = (9.00 \times 10^9) \times 1.34 \times 10^{-10} = 1.206 \times 10^0 \, \text{N} \approx 1.2 \, \text{N} \][/tex]
So, the force [tex]\( F \)[/tex] between the two charges, with the provided values, is approximately [tex]\( 1.2 \, \text{N} \)[/tex]. From the given options, this matches closest to:
[tex]\[ \boxed{1.0 \, \text{N}} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.