Find accurate and reliable answers to your questions on IDNLearn.com. Our platform is designed to provide trustworthy and thorough answers to any questions you may have.
Sagot :
To determine the force [tex]\( F \)[/tex] between two charges, [tex]\( Q_1 \)[/tex] and [tex]\( Q_2 \)[/tex], separated by a distance [tex]\( r \)[/tex], we use Coulomb's law. The formula for Coulomb's law is:
[tex]\[ F = k \frac{Q_1 Q_2}{r^2} \][/tex]
Where:
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \)[/tex]
- [tex]\( Q_1 \)[/tex] is the first charge, [tex]\( 3.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( Q_2 \)[/tex] is the second charge, [tex]\( 4.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the charges, [tex]\( 3.0 \, \text{m} \)[/tex]
Let's substitute these values into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{(3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C})}{(3.0 \, \text{m})^2} \][/tex]
First, let's calculate the product of the charges:
[tex]\[ Q_1 \times Q_2 = (3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C}) = 12.0 \times 10^{-10} \, \text{C}^2 \][/tex]
Next, calculate the square of the distance:
[tex]\[ r^2 = (3.0 \, \text{m})^2 = 9.0 \, \text{m}^2 \][/tex]
Now, substitute these results back into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} \][/tex]
Perform the division inside the fraction:
[tex]\[ \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} = 1.333... \times 10^{-10} \, \text{C}^2/\text{m}^2 \approx 1.34 \times 10^{-10} \, \text{C}^2/\text{m}^2 \][/tex]
Then multiply by Coulomb's constant [tex]\( k \)[/tex]:
[tex]\[ F = (9.00 \times 10^9) \times 1.34 \times 10^{-10} = 1.206 \times 10^0 \, \text{N} \approx 1.2 \, \text{N} \][/tex]
So, the force [tex]\( F \)[/tex] between the two charges, with the provided values, is approximately [tex]\( 1.2 \, \text{N} \)[/tex]. From the given options, this matches closest to:
[tex]\[ \boxed{1.0 \, \text{N}} \][/tex]
[tex]\[ F = k \frac{Q_1 Q_2}{r^2} \][/tex]
Where:
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \)[/tex]
- [tex]\( Q_1 \)[/tex] is the first charge, [tex]\( 3.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( Q_2 \)[/tex] is the second charge, [tex]\( 4.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the charges, [tex]\( 3.0 \, \text{m} \)[/tex]
Let's substitute these values into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{(3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C})}{(3.0 \, \text{m})^2} \][/tex]
First, let's calculate the product of the charges:
[tex]\[ Q_1 \times Q_2 = (3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C}) = 12.0 \times 10^{-10} \, \text{C}^2 \][/tex]
Next, calculate the square of the distance:
[tex]\[ r^2 = (3.0 \, \text{m})^2 = 9.0 \, \text{m}^2 \][/tex]
Now, substitute these results back into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} \][/tex]
Perform the division inside the fraction:
[tex]\[ \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} = 1.333... \times 10^{-10} \, \text{C}^2/\text{m}^2 \approx 1.34 \times 10^{-10} \, \text{C}^2/\text{m}^2 \][/tex]
Then multiply by Coulomb's constant [tex]\( k \)[/tex]:
[tex]\[ F = (9.00 \times 10^9) \times 1.34 \times 10^{-10} = 1.206 \times 10^0 \, \text{N} \approx 1.2 \, \text{N} \][/tex]
So, the force [tex]\( F \)[/tex] between the two charges, with the provided values, is approximately [tex]\( 1.2 \, \text{N} \)[/tex]. From the given options, this matches closest to:
[tex]\[ \boxed{1.0 \, \text{N}} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.