IDNLearn.com offers a reliable platform for finding accurate and timely answers. Join our knowledgeable community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Sure, let's solve the problem step-by-step.
We are given the combination [tex]\({}^{3n}C_2 = 15\)[/tex]. The formula for combinations is given by [tex]\({}^nC_r = \frac{n!}{r!(n-r)!}\)[/tex].
Here, [tex]\(n = 3n\)[/tex] and [tex]\(r = 2\)[/tex]. Plugging in these values, we get:
[tex]\[ {}^{3n}C_2 = \frac{(3n)!}{2!(3n-2)!} = 15 \][/tex]
First, let's break this down. Using the factorial properties, we can write:
[tex]\[ \frac{(3n)!}{(3n-2)!} = (3n)(3n-1)(3n-2)! \][/tex]
Thus, the equation simplifies to:
[tex]\[ {}^{3n}C_2 = \frac{(3n)(3n-1)(3n-2)!}{2!(3n-2)!} = \frac{(3n)(3n-1)}{2} = 15 \][/tex]
We can now eliminate the factorial terms [tex]\((3n-2)!\)[/tex] which appear in both the numerator and the denominator:
[tex]\[ \frac{(3n)(3n-1)}{2} = 15 \][/tex]
To eliminate the fraction, multiply both sides by 2:
[tex]\[ (3n)(3n-1) = 30 \][/tex]
Expanding the left-hand side:
[tex]\[ 3n \cdot 3n - 3n = 9n^2 - 3n \][/tex]
So the equation becomes:
[tex]\[ 9n^2 - 3n = 30 \][/tex]
Subtract 30 from both sides to set the equation to 0:
[tex]\[ 9n^2 - 3n - 30 = 0 \][/tex]
This is a quadratic equation in the standard form [tex]\(ax^2 + bx + c = 0\)[/tex], where [tex]\(a = 9\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -30\)[/tex].
To solve this quadratic equation, we can use the quadratic formula [tex]\(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ n = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 9 \cdot (-30)}}{2 \cdot 9} \][/tex]
Simplify inside the square root:
[tex]\[ n = \frac{3 \pm \sqrt{9 + 1080}}{18} \][/tex]
[tex]\[ n = \frac{3 \pm \sqrt{1089}}{18} \][/tex]
[tex]\[ \sqrt{1089} = 33, \text{ so:} \][/tex]
[tex]\[ n = \frac{3 \pm 33}{18} \][/tex]
This gives us two values for [tex]\(n\)[/tex]:
[tex]\[ n = \frac{3 + 33}{18} = \frac{36}{18} = 2 \][/tex]
[tex]\[ n = \frac{3 - 33}{18} = \frac{-30}{18} = -\frac{5}{3} \][/tex]
Thus, we have two solutions: [tex]\( n = 2 \)[/tex] and [tex]\(n = -\frac{5}{3}\)[/tex]. However, since [tex]\(n\)[/tex] is a variable that represents a count (combinations and factorials only make sense for non-negative integers), we discard the negative fraction solution.
Therefore, the required value of [tex]\(n\)[/tex] is:
[tex]\[ n = 2 \][/tex]
We are given the combination [tex]\({}^{3n}C_2 = 15\)[/tex]. The formula for combinations is given by [tex]\({}^nC_r = \frac{n!}{r!(n-r)!}\)[/tex].
Here, [tex]\(n = 3n\)[/tex] and [tex]\(r = 2\)[/tex]. Plugging in these values, we get:
[tex]\[ {}^{3n}C_2 = \frac{(3n)!}{2!(3n-2)!} = 15 \][/tex]
First, let's break this down. Using the factorial properties, we can write:
[tex]\[ \frac{(3n)!}{(3n-2)!} = (3n)(3n-1)(3n-2)! \][/tex]
Thus, the equation simplifies to:
[tex]\[ {}^{3n}C_2 = \frac{(3n)(3n-1)(3n-2)!}{2!(3n-2)!} = \frac{(3n)(3n-1)}{2} = 15 \][/tex]
We can now eliminate the factorial terms [tex]\((3n-2)!\)[/tex] which appear in both the numerator and the denominator:
[tex]\[ \frac{(3n)(3n-1)}{2} = 15 \][/tex]
To eliminate the fraction, multiply both sides by 2:
[tex]\[ (3n)(3n-1) = 30 \][/tex]
Expanding the left-hand side:
[tex]\[ 3n \cdot 3n - 3n = 9n^2 - 3n \][/tex]
So the equation becomes:
[tex]\[ 9n^2 - 3n = 30 \][/tex]
Subtract 30 from both sides to set the equation to 0:
[tex]\[ 9n^2 - 3n - 30 = 0 \][/tex]
This is a quadratic equation in the standard form [tex]\(ax^2 + bx + c = 0\)[/tex], where [tex]\(a = 9\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -30\)[/tex].
To solve this quadratic equation, we can use the quadratic formula [tex]\(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ n = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 9 \cdot (-30)}}{2 \cdot 9} \][/tex]
Simplify inside the square root:
[tex]\[ n = \frac{3 \pm \sqrt{9 + 1080}}{18} \][/tex]
[tex]\[ n = \frac{3 \pm \sqrt{1089}}{18} \][/tex]
[tex]\[ \sqrt{1089} = 33, \text{ so:} \][/tex]
[tex]\[ n = \frac{3 \pm 33}{18} \][/tex]
This gives us two values for [tex]\(n\)[/tex]:
[tex]\[ n = \frac{3 + 33}{18} = \frac{36}{18} = 2 \][/tex]
[tex]\[ n = \frac{3 - 33}{18} = \frac{-30}{18} = -\frac{5}{3} \][/tex]
Thus, we have two solutions: [tex]\( n = 2 \)[/tex] and [tex]\(n = -\frac{5}{3}\)[/tex]. However, since [tex]\(n\)[/tex] is a variable that represents a count (combinations and factorials only make sense for non-negative integers), we discard the negative fraction solution.
Therefore, the required value of [tex]\(n\)[/tex] is:
[tex]\[ n = 2 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.