Explore IDNLearn.com's extensive Q&A database and find the answers you need. Our experts are available to provide in-depth and trustworthy answers to any questions you may have.
Sagot :
Certainly! Let's go through each part of the question step-by-step to find the concentration of hydronium ions, [tex]\( \text{H}_3\text{O}^+ \)[/tex], in different scenarios.
### Part a: Given [tex]\([ \text{OH}^- ] = 5 \times 10^{-5} \text{ M}\)[/tex]
We use the ion-product constant for water at 25 degrees Celsius:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1 \times 10^{-14} \][/tex]
We can find the concentration of [tex]\(\text{H}_3\text{O}^+\)[/tex] using the given [tex]\([ \text{OH}^- ]\)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{5 \times 10^{-5}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 2 \times 10^{-10} \text{ M} \)[/tex].
### Part c: Given [tex]\(0.05 \text{ M Sr(OH)}_2\)[/tex]
Strontium hydroxide, [tex]\( \text{Sr(OH)}_2 \)[/tex], dissociates completely in water and provides 2 hydroxide ions ([tex]\( \text{OH}^- \)[/tex]) per formula unit:
[tex]\[ \text{Sr(OH)}_2 \rightarrow \text{Sr}^{2+} + 2\text{OH}^- \][/tex]
Therefore, the concentration of hydroxide ions is:
[tex]\[ [ \text{OH}^- ] = 2 \times 0.05 \text{ M} = 0.10 \text{ M} \][/tex]
Now, we use the ion-product constant for water:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{0.10} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-13} \text{ M} \)[/tex].
### Part b: Given [tex]\([ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ]\)[/tex]
This gives us a relationship between [tex]\([ \text{OH}^- ]\)[/tex] and [tex]\([ \text{H}_3\text{O}^+ ]\)[/tex]:
[tex]\[ [ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ] \][/tex]
We use the ion-product constant for water:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] \][/tex]
Using the given relationship:
[tex]\[ K_w = [\text{H}_3\text{O}^+] \cdot 100 [ \text{H}_3\text{O}^+ ] \][/tex]
[tex]\[ K_w = 100 [\text{H}_3\text{O}^+]^2 \][/tex]
Solving for [tex]\([ \text{H}_3\text{O}^+] \)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+]^2 = \frac{K_w}{100} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = \sqrt{\frac{1 \times 10^{-14}}{100}} = \sqrt{1 \times 10^{-16}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-8} \text{ M} \)[/tex].
### Part d: Given [tex]\(0.01 \text{ M H}_2\text{SO}_4\)[/tex]
Sulfuric acid, [tex]\( \text{H}_2\text{SO}_4 \)[/tex], is a strong acid that dissociates completely in water and provides 2 hydronium ions ([tex]\( \text{H}_3\text{O}^+ \)[/tex]) per formula unit:
[tex]\[ \text{H}_2\text{SO}_4 \rightarrow 2\text{H}_3\text{O}^+ + \text{SO}_4^{2-} \][/tex]
Therefore, the concentration of hydronium ions is:
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 0.01 \text{ M} = 0.02 \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 0.02 \text{ M} \)[/tex].
### Summary:
a. [tex]\( [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \)[/tex]
c. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \)[/tex]
b. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \)[/tex]
d. [tex]\( [\text{H}_3\text{O}^+] = 0.02 \text{ M} \)[/tex]
### Part a: Given [tex]\([ \text{OH}^- ] = 5 \times 10^{-5} \text{ M}\)[/tex]
We use the ion-product constant for water at 25 degrees Celsius:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1 \times 10^{-14} \][/tex]
We can find the concentration of [tex]\(\text{H}_3\text{O}^+\)[/tex] using the given [tex]\([ \text{OH}^- ]\)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{5 \times 10^{-5}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 2 \times 10^{-10} \text{ M} \)[/tex].
### Part c: Given [tex]\(0.05 \text{ M Sr(OH)}_2\)[/tex]
Strontium hydroxide, [tex]\( \text{Sr(OH)}_2 \)[/tex], dissociates completely in water and provides 2 hydroxide ions ([tex]\( \text{OH}^- \)[/tex]) per formula unit:
[tex]\[ \text{Sr(OH)}_2 \rightarrow \text{Sr}^{2+} + 2\text{OH}^- \][/tex]
Therefore, the concentration of hydroxide ions is:
[tex]\[ [ \text{OH}^- ] = 2 \times 0.05 \text{ M} = 0.10 \text{ M} \][/tex]
Now, we use the ion-product constant for water:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{0.10} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-13} \text{ M} \)[/tex].
### Part b: Given [tex]\([ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ]\)[/tex]
This gives us a relationship between [tex]\([ \text{OH}^- ]\)[/tex] and [tex]\([ \text{H}_3\text{O}^+ ]\)[/tex]:
[tex]\[ [ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ] \][/tex]
We use the ion-product constant for water:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] \][/tex]
Using the given relationship:
[tex]\[ K_w = [\text{H}_3\text{O}^+] \cdot 100 [ \text{H}_3\text{O}^+ ] \][/tex]
[tex]\[ K_w = 100 [\text{H}_3\text{O}^+]^2 \][/tex]
Solving for [tex]\([ \text{H}_3\text{O}^+] \)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+]^2 = \frac{K_w}{100} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = \sqrt{\frac{1 \times 10^{-14}}{100}} = \sqrt{1 \times 10^{-16}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-8} \text{ M} \)[/tex].
### Part d: Given [tex]\(0.01 \text{ M H}_2\text{SO}_4\)[/tex]
Sulfuric acid, [tex]\( \text{H}_2\text{SO}_4 \)[/tex], is a strong acid that dissociates completely in water and provides 2 hydronium ions ([tex]\( \text{H}_3\text{O}^+ \)[/tex]) per formula unit:
[tex]\[ \text{H}_2\text{SO}_4 \rightarrow 2\text{H}_3\text{O}^+ + \text{SO}_4^{2-} \][/tex]
Therefore, the concentration of hydronium ions is:
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 0.01 \text{ M} = 0.02 \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 0.02 \text{ M} \)[/tex].
### Summary:
a. [tex]\( [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \)[/tex]
c. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \)[/tex]
b. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \)[/tex]
d. [tex]\( [\text{H}_3\text{O}^+] = 0.02 \text{ M} \)[/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.