Whether you're a student or a professional, IDNLearn.com has answers for everyone. Our community is here to provide detailed and trustworthy answers to any questions you may have.
Sagot :
To determine the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium, we need to use the Gibbs free energy equation at equilibrium. The Gibbs free energy [tex]\( G \)[/tex] is given by:
[tex]\[ G = H - T S \][/tex]
At equilibrium, the Gibbs free energy change [tex]\( \Delta G \)[/tex] for the reaction is zero:
[tex]\[ \Delta G = \Delta H - T_{eq} \Delta S = 0 \][/tex]
We can rearrange this equation to solve for the equilibrium temperature [tex]\( T_{eq} \)[/tex]:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
Let's use the given values for the enthalpy change [tex]\( \Delta H \)[/tex] and entropy change [tex]\( \Delta S \)[/tex] to find [tex]\( T_{eq} \)[/tex]. We need to ensure the units are consistent, so we first convert the enthalpy change from kJ to J (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]):
[tex]\[ \Delta H = -3352 \, \text{kJ} = -3352 \times 1000 \, \text{J} \][/tex]
[tex]\[ \Delta H = -3352000 \, \text{J} \][/tex]
Now, we can substitute the values into the equation:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
[tex]\[ T_{eq} = \frac{-3352000 \, \text{J}}{-625.1 \, \text{J/K}} \][/tex]
Evaluating this expression gives the equilibrium temperature:
[tex]\[ T_{eq} = 5362.342025275956 \, \text{K} \][/tex]
Therefore, the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium is approximately:
[tex]\[ \begin{array}{|c|c|} \hline 5362 & \text{K} \\ \hline \end{array} \][/tex]
This can be expressed as:
[tex]\[ \boxed{5362 \, \text{K}} \][/tex]
[tex]\[ G = H - T S \][/tex]
At equilibrium, the Gibbs free energy change [tex]\( \Delta G \)[/tex] for the reaction is zero:
[tex]\[ \Delta G = \Delta H - T_{eq} \Delta S = 0 \][/tex]
We can rearrange this equation to solve for the equilibrium temperature [tex]\( T_{eq} \)[/tex]:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
Let's use the given values for the enthalpy change [tex]\( \Delta H \)[/tex] and entropy change [tex]\( \Delta S \)[/tex] to find [tex]\( T_{eq} \)[/tex]. We need to ensure the units are consistent, so we first convert the enthalpy change from kJ to J (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]):
[tex]\[ \Delta H = -3352 \, \text{kJ} = -3352 \times 1000 \, \text{J} \][/tex]
[tex]\[ \Delta H = -3352000 \, \text{J} \][/tex]
Now, we can substitute the values into the equation:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
[tex]\[ T_{eq} = \frac{-3352000 \, \text{J}}{-625.1 \, \text{J/K}} \][/tex]
Evaluating this expression gives the equilibrium temperature:
[tex]\[ T_{eq} = 5362.342025275956 \, \text{K} \][/tex]
Therefore, the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium is approximately:
[tex]\[ \begin{array}{|c|c|} \hline 5362 & \text{K} \\ \hline \end{array} \][/tex]
This can be expressed as:
[tex]\[ \boxed{5362 \, \text{K}} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.