IDNLearn.com is designed to help you find reliable answers to any question you have. Discover comprehensive answers from knowledgeable members of our community, covering a wide range of topics to meet all your informational needs.
Sagot :
Sure! Let's find the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] based on the given equations:
1. [tex]\( 2A - B = \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \)[/tex]
2. [tex]\( 2B + A = \begin{bmatrix} 3 & 2 & 5 \\ -2 & 1 & -7 \end{bmatrix} \)[/tex]
To solve these equations step-by-step:
### Step 1: Isolate [tex]\( A \)[/tex]
First, we can manipulate these equations to isolate one of the matrices. Let's solve for [tex]\( A \)[/tex] first.
Equation 1: [tex]\( 2A - B = \mathbf{X} \)[/tex], where [tex]\( \mathbf{X} = \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \)[/tex].
Multiply the whole equation by 2:
[tex]\[ 4A - 2B = 2\mathbf{X} \][/tex]
This results in:
[tex]\[ 4A - 2B = \begin{bmatrix} 12 & -12 & 0 \\ -8 & 4 & 2 \end{bmatrix} \][/tex]
Equation 2: [tex]\( 2B + A = \mathbf{Y} \)[/tex], where [tex]\( \mathbf{Y} = \begin{bmatrix} 3 & 2 & 5 \\ -2 & 1 & -7 \end{bmatrix} \)[/tex].
Add the two equations together:
[tex]\[ 4A - 2B + 2B + A = \begin{bmatrix} 12 & -12 & 0 \\ -8 & 4 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 2 & 5 \\ -2 & 1 & -7 \end{bmatrix} \][/tex]
[tex]\[ 5A = \begin{bmatrix} 15 & -10 & 5 \\ -10 & 5 & -5 \end{bmatrix} \][/tex]
Now, divide both sides by 5:
[tex]\[ A = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{bmatrix} \][/tex]
### Step 2: Solve for [tex]\( B \)[/tex]
Now that we have [tex]\( A \)[/tex], substitute it back into one of the original equations to solve for [tex]\( B \)[/tex].
We'll use the equation [tex]\( 2A - B = \mathbf{X} \)[/tex]:
[tex]\[ 2A - B = \mathbf{X} \][/tex]
[tex]\[ 2 \begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{bmatrix} - B = \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \][/tex]
[tex]\[ \begin{bmatrix} 6 & -4 & 2 \\ -4 & 2 & -2 \end{bmatrix} - B = \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \][/tex]
Rearrange to isolate [tex]\( B \)[/tex]:
[tex]\[ B = \begin{bmatrix} 6 & -4 & 2 \\ -4 & 2 & -2 \end{bmatrix} - \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix} \][/tex]
### Final Matrices
Therefore, the solutions for [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are:
[tex]\[ A = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix} \][/tex]
1. [tex]\( 2A - B = \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \)[/tex]
2. [tex]\( 2B + A = \begin{bmatrix} 3 & 2 & 5 \\ -2 & 1 & -7 \end{bmatrix} \)[/tex]
To solve these equations step-by-step:
### Step 1: Isolate [tex]\( A \)[/tex]
First, we can manipulate these equations to isolate one of the matrices. Let's solve for [tex]\( A \)[/tex] first.
Equation 1: [tex]\( 2A - B = \mathbf{X} \)[/tex], where [tex]\( \mathbf{X} = \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \)[/tex].
Multiply the whole equation by 2:
[tex]\[ 4A - 2B = 2\mathbf{X} \][/tex]
This results in:
[tex]\[ 4A - 2B = \begin{bmatrix} 12 & -12 & 0 \\ -8 & 4 & 2 \end{bmatrix} \][/tex]
Equation 2: [tex]\( 2B + A = \mathbf{Y} \)[/tex], where [tex]\( \mathbf{Y} = \begin{bmatrix} 3 & 2 & 5 \\ -2 & 1 & -7 \end{bmatrix} \)[/tex].
Add the two equations together:
[tex]\[ 4A - 2B + 2B + A = \begin{bmatrix} 12 & -12 & 0 \\ -8 & 4 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 2 & 5 \\ -2 & 1 & -7 \end{bmatrix} \][/tex]
[tex]\[ 5A = \begin{bmatrix} 15 & -10 & 5 \\ -10 & 5 & -5 \end{bmatrix} \][/tex]
Now, divide both sides by 5:
[tex]\[ A = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{bmatrix} \][/tex]
### Step 2: Solve for [tex]\( B \)[/tex]
Now that we have [tex]\( A \)[/tex], substitute it back into one of the original equations to solve for [tex]\( B \)[/tex].
We'll use the equation [tex]\( 2A - B = \mathbf{X} \)[/tex]:
[tex]\[ 2A - B = \mathbf{X} \][/tex]
[tex]\[ 2 \begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{bmatrix} - B = \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \][/tex]
[tex]\[ \begin{bmatrix} 6 & -4 & 2 \\ -4 & 2 & -2 \end{bmatrix} - B = \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \][/tex]
Rearrange to isolate [tex]\( B \)[/tex]:
[tex]\[ B = \begin{bmatrix} 6 & -4 & 2 \\ -4 & 2 & -2 \end{bmatrix} - \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix} \][/tex]
### Final Matrices
Therefore, the solutions for [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are:
[tex]\[ A = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.