IDNLearn.com provides a user-friendly platform for finding answers to your questions. Our community provides timely and precise responses to help you understand and solve any issue you face.
Sagot :
Certainly! To find the acceleration due to gravity using the given length and period of a pendulum, we can use the following fundamental equation for the period of a simple pendulum:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.