Discover the best answers to your questions with the help of IDNLearn.com. Our platform is designed to provide quick and accurate answers to any questions you may have.

Exercise 8.8

Reduce the partial differential equation

[tex]\[ a u_x + b u_y + c u = 0 \][/tex]

to a first-order ODE by introducing the change of variables [tex]\( s = ax + by \)[/tex] and [tex]\( t = bx - ay \)[/tex].


Sagot :

To reduce the partial differential equation

[tex]\[ a u_x + b u_y + c u = 0 \][/tex]

to a first-order ordinary differential equation by introducing the change of variables [tex]\( s = ax + by \)[/tex] and [tex]\( t = bx - ay \)[/tex], we proceed as follows:

### Step 1: Express [tex]\( u \)[/tex] in terms of the new variables [tex]\( s \)[/tex] and [tex]\( t \)[/tex]

Given the function [tex]\( u = u(s, t) \)[/tex], where [tex]\( s = ax + by \)[/tex] and [tex]\( t = bx - ay \)[/tex].

### Step 2: Compute the partial derivatives of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex] and [tex]\( y \)[/tex]

Using the chain rule for partial derivatives, we have:

[tex]\[ u_x = \frac{\partial u}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial x} \][/tex]
[tex]\[ u_y = \frac{\partial u}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial y} \][/tex]

First, compute the needed derivatives:
[tex]\[ \frac{\partial s}{\partial x} = a, \quad \frac{\partial s}{\partial y} = b \][/tex]
[tex]\[ \frac{\partial t}{\partial x} = b, \quad \frac{\partial t}{\partial y} = -a \][/tex]

Thus:
[tex]\[ u_x = \frac{\partial u}{\partial s} a + \frac{\partial u}{\partial t} b \][/tex]
[tex]\[ u_y = \frac{\partial u}{\partial s} b - \frac{\partial u}{\partial t} a \][/tex]

### Step 3: Substitute these expressions into the original PDE

The original PDE in terms of [tex]\( u_x \)[/tex] and [tex]\( u_y \)[/tex] is:

[tex]\[ a u_x + b u_y + c u = 0 \][/tex]

Substitute the expressions for [tex]\( u_x \)[/tex] and [tex]\( u_y \)[/tex]:

[tex]\[ a (a u_s + b u_t) + b (b u_s - a u_t) + c u = 0 \][/tex]

### Step 4: Simplify the equation

[tex]\[ a^2 u_s + ab u_t + b^2 u_s - ab u_t + c u = 0 \][/tex]

Notice that the [tex]\( u_t \)[/tex] terms cancel out:

[tex]\[ (a^2 + b^2) u_s + c u = 0 \][/tex]

### Step 5: Collect terms involving [tex]\( u \)[/tex] and [tex]\( u_s \)[/tex]

The equation simplifies to:

[tex]\[ (a^2 + b^2) \frac{\partial u}{\partial s} + c u = 0 \][/tex]

### Step 6: Solve this as a first-order ODE

This is now a first-order ordinary differential equation in terms of [tex]\( s \)[/tex]:

[tex]\[ (a^2 + b^2) \frac{du}{ds} + c u = 0 \][/tex]

If we divide the entire equation by [tex]\( a^2 + b^2 \)[/tex] (assuming [tex]\( a^2 + b^2 \ne 0 \)[/tex]):

[tex]\[ \frac{du}{ds} + \frac{c}{a^2 + b^2} u = 0 \][/tex]

This is a linear first-order ordinary differential equation of the form:

[tex]\[ \frac{du}{ds} + \lambda u = 0 \][/tex]

where [tex]\( \lambda = \frac{c}{a^2 + b^2} \)[/tex].

### Step 7: Solution of the first-order ODE

The solution to this first-order linear ODE is:

[tex]\[ u(s) = u_0 \exp \left(-\lambda s \right) = u_0 \exp \left(-\frac{c}{a^2 + b^2} s \right) \][/tex]

where [tex]\( u_0 \)[/tex] is an integration constant that may depend on the second variable [tex]\( t \)[/tex]:

[tex]\[ u(s, t) = u_0(t) \exp \left(-\frac{c}{a^2 + b^2} s \right) \][/tex]

Thus, the partial differential equation [tex]\( a u_x + b u_y + c u = 0 \)[/tex] has been reduced to a first-order ordinary differential equation as outlined above.