IDNLearn.com provides a seamless experience for finding and sharing answers. Our experts provide timely and precise responses to help you understand and solve any issue you face.

Exercise 8.9

Solve the partial differential equation
[tex]\[ u_x + u_y = 1 \][/tex]
by introducing the change of variables [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex].


Sagot :

To solve the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] using the change of variables [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], let's follow these steps:

1. Introduce the change of variables:

Let [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex].

2. Express [tex]\( u \)[/tex] as a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex]:

Assume [tex]\( u \)[/tex] is now a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex], say [tex]\( u(x,y) = v(s,t) \)[/tex].

3. Calculate the partial derivatives using the chain rule:

- For [tex]\( u_x \)[/tex]:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial x} = 1, \quad \frac{\partial t}{\partial x} = 1 \][/tex]
So,
[tex]\[ u_x = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot 1 = \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \][/tex]

- For [tex]\( u_y \)[/tex]:
[tex]\[ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial y} = 1, \quad \frac{\partial t}{\partial y} = -1 \][/tex]
So,
[tex]\[ u_y = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot (-1) = \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \][/tex]

4. Substitute the derivatives into the PDE [tex]\( u_x + u_y = 1 \)[/tex]:

[tex]\[ u_x + u_y = \left( \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \right) + \left( \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \right) = 1 \][/tex]
Simplifying, we get:
[tex]\[ 2 \frac{\partial v}{\partial s} = 1 \][/tex]
[tex]\[ \frac{\partial v}{\partial s} = \frac{1}{2} \][/tex]

5. Integrate with respect to [tex]\( s \)[/tex]:

[tex]\[ v(s,t) = \frac{1}{2} s + g(t) \][/tex]
where [tex]\( g(t) \)[/tex] is an arbitrary function of [tex]\( t \)[/tex].

6. Express [tex]\( u \)[/tex] in terms of the original variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

Recall [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], so:
[tex]\[ u(x,y) = v(s,t) = \frac{1}{2} (x + y) + g(x - y) \][/tex]

The general solution to the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] is:
[tex]\[ u(x,y) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
where [tex]\( g \)[/tex] is an arbitrary function of [tex]\( (x - y) \)[/tex].