IDNLearn.com: Your trusted platform for finding reliable answers. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.
Sagot :
To find out how much heat is released when 60.0 grams of ethanol cools from 70°C to 43°C, we can use the heat transfer formula:
[tex]\[ Q = mc\Delta T \][/tex]
Where:
- [tex]\( Q \)[/tex] is the heat released or absorbed,
- [tex]\( m \)[/tex] is the mass of the substance (in grams),
- [tex]\( c \)[/tex] is the specific heat capacity of the substance (in [tex]\( J/g^\circ C \)[/tex]),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in [tex]\( ^\circ C \)[/tex]).
Given the values:
- Mass of ethanol, [tex]\( m = 60.0 \)[/tex] grams,
- Specific heat capacity of liquid ethanol, [tex]\( c = 1.0 J/g^\circ C \)[/tex],
- Initial temperature, [tex]\( T_{\text{initial}} = 70.0^\circ C \)[/tex],
- Final temperature, [tex]\( T_{\text{final}} = 43.0^\circ C \)[/tex].
First, calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{initial}} - T_{\text{final}} \][/tex]
[tex]\[ \Delta T = 70.0^\circ C - 43.0^\circ C \][/tex]
[tex]\[ \Delta T = 27.0^\circ C \][/tex]
Next, use the heat transfer formula:
[tex]\[ Q = mc\Delta T \][/tex]
[tex]\[ Q = 60.0 \, \text{g} \times 1.0 \, \text{J/g}^\circ \text{C} \times 27.0^\circ \text{C} \][/tex]
[tex]\[ Q = 60.0 \times 27.0 \][/tex]
[tex]\[ Q = 1620.0 \, \text{J} \][/tex]
Therefore, the amount of heat released when 60.0 grams of ethanol cools from 70°C to 43°C is [tex]\( 1620.0 \, \text{J} \)[/tex].
From the given options, the closest value to this result is 1600 J. Thus, the correct answer is:
[tex]\[ \boxed{1600 \, \text{J}} \][/tex]
[tex]\[ Q = mc\Delta T \][/tex]
Where:
- [tex]\( Q \)[/tex] is the heat released or absorbed,
- [tex]\( m \)[/tex] is the mass of the substance (in grams),
- [tex]\( c \)[/tex] is the specific heat capacity of the substance (in [tex]\( J/g^\circ C \)[/tex]),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in [tex]\( ^\circ C \)[/tex]).
Given the values:
- Mass of ethanol, [tex]\( m = 60.0 \)[/tex] grams,
- Specific heat capacity of liquid ethanol, [tex]\( c = 1.0 J/g^\circ C \)[/tex],
- Initial temperature, [tex]\( T_{\text{initial}} = 70.0^\circ C \)[/tex],
- Final temperature, [tex]\( T_{\text{final}} = 43.0^\circ C \)[/tex].
First, calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{initial}} - T_{\text{final}} \][/tex]
[tex]\[ \Delta T = 70.0^\circ C - 43.0^\circ C \][/tex]
[tex]\[ \Delta T = 27.0^\circ C \][/tex]
Next, use the heat transfer formula:
[tex]\[ Q = mc\Delta T \][/tex]
[tex]\[ Q = 60.0 \, \text{g} \times 1.0 \, \text{J/g}^\circ \text{C} \times 27.0^\circ \text{C} \][/tex]
[tex]\[ Q = 60.0 \times 27.0 \][/tex]
[tex]\[ Q = 1620.0 \, \text{J} \][/tex]
Therefore, the amount of heat released when 60.0 grams of ethanol cools from 70°C to 43°C is [tex]\( 1620.0 \, \text{J} \)[/tex].
From the given options, the closest value to this result is 1600 J. Thus, the correct answer is:
[tex]\[ \boxed{1600 \, \text{J}} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.