Join the IDNLearn.com community and get your questions answered by knowledgeable individuals. Join our interactive Q&A platform to receive prompt and accurate responses from experienced professionals in various fields.

Consider the following intermediate chemical equations.

[tex]\[
\begin{array}{ll}
CH_4(g) \rightarrow C(s) + 2 H_2(g) & \Delta H_1 = 74.6 \, \text{kJ} \\
CCl_4(g) \rightarrow C(s) + 2 Cl_2(g) & \Delta H_2 = 95.7 \, \text{kJ} \\
H_2(g) + Cl_2(g) \rightarrow 2 HCl(g) & \Delta H_3 = -92.3 \, \text{kJ}
\end{array}
\][/tex]

What is the enthalpy of the overall chemical reaction [tex]\( CH_4(g) + 4 Cl_2(g) \rightarrow CCl_4(g) + 4 HCl(g) \)[/tex]?

A. [tex]\(-205.7 \, \text{kJ}\)[/tex]
B. [tex]\(-113.4 \, \text{kJ}\)[/tex]
C. [tex]\(-14.3 \, \text{kJ}\)[/tex]
D. [tex]\(78.0 \, \text{kJ}\)[/tex]


Sagot :

To determine the enthalpy change (ΔH) of the overall reaction [tex]\( \text{CH}_4(g) + 4 \text{Cl}_2(g) \rightarrow \text{CCl}_4(g) + 4 \text{HCl}(g) \)[/tex], we will follow a step-by-step approach using the given intermediate reactions and their enthalpy changes.

Step 1: List the intermediate reactions with their enthalpy changes.

1. [tex]\( \text{CH}_4(g) \rightarrow \text{C}(s) + 2 \text{H}_2(g) \)[/tex], ΔH = 74.6 kJ
2. [tex]\( \text{CCl}_4(g) \rightarrow \text{C}(s) + 2 \text{Cl}_2(g) \)[/tex], ΔH = 95.7 kJ
3. [tex]\( \text{H}_2(g) + \text{Cl}_2(g) \rightarrow 2 \text{HCl}(g) \)[/tex], ΔH = -92.3 kJ

Step 2: Reverse the second reaction to match the overall reaction's direction.

[tex]\[ \text{C}(s) + 2 \text{Cl}_2(g) \rightarrow \text{CCl}_4(g), \Delta H = -95.7 \text{ kJ} \][/tex]

Reversing the reaction changes the sign of ΔH.

Step 3: Determine the number of times each intermediate reaction contributes to the overall reaction.

For the production of [tex]\( 4 \, \text{HCl}(g) \)[/tex]:
[tex]\[ 2 \left(\text{H}_2(g) + \text{Cl}_2(g) \rightarrow 2 \text{HCl}(g) \right), \Delta H = 2 \times (-92.3)\][/tex]

Combine this with the reversed second reaction and the first reaction to match the overall reaction.

Step 4: Add the enthalpy changes of the individual steps.

[tex]\[ \Delta H_{\text{overall}} = \Delta H_1 + (-\Delta H_2) + 2 \times \Delta H_3 \][/tex]

Given the values:

[tex]\[ \Delta H_{\text{overall}} = 74.6 \text{ kJ} + (-95.7 \text{ kJ}) + 2 \times (-92.3 \text{ kJ}) \][/tex]
[tex]\[ \Delta H_{\text{overall}} = 74.6 \text{ kJ} - 95.7 \text{ kJ} - 184.6 \text{ kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = -205.7 \text{ kJ} \][/tex]

Hence, the enthalpy change of the overall reaction [tex]\( \text{CH}_4(g) + 4 \text{Cl}_2(g) \rightarrow \text{CCl}_4(g) + 4 \text{HCl}(g) \)[/tex] is [tex]\( -205.7 \text{ kJ} \)[/tex].

Answer: The enthalpy of the overall chemical reaction is [tex]\( -205.7 \text{ kJ} \)[/tex].

So the correct answer is:
[tex]\[ \boxed{-205.7 \text{ kJ}} \][/tex]