IDNLearn.com provides a collaborative environment for finding accurate answers. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
To determine the possible rational zeros of the polynomial [tex]\( f(x) = 2x^3 + x^2 - 2x - 1 \)[/tex] and then find all actual rational zeros, we will use the Rational Root Theorem and synthetic division. The Rational Root Theorem states that any possible rational root, [tex]\( \frac{p}{q} \)[/tex], of a polynomial is a factor of the constant term (constant term = [tex]\(-1\)[/tex]) divided by a factor of the leading coefficient (leading coefficient = [tex]\(2\)[/tex]).
### Step 1: Identify factors of the constant term and the leading coefficient
- Factors of [tex]\(-1\)[/tex]: [tex]\(\pm 1\)[/tex]
- Factors of [tex]\(2\)[/tex]: [tex]\(\pm 1, \pm 2\)[/tex]
### Step 2: List all possible rational zeros
The possible rational zeros are the fractions formed by dividing each factor of the constant term by each factor of the leading coefficient:
[tex]\[ \text{Possible rational zeros} = \left\{ \pm 1, \pm \frac{1}{2} \right\} \][/tex]
### Step 3: Test each possible rational zero
We will substitute each possible rational zero into the polynomial [tex]\( f(x) \)[/tex] to see if it equals zero.
1. Test [tex]\( x = 1 \)[/tex]
[tex]\[ f(1) = 2(1)^3 + (1)^2 - 2(1) - 1 = 2 + 1 - 2 - 1 = 0 \][/tex]
So, [tex]\( x = 1 \)[/tex] is a rational zero.
2. Test [tex]\( x = -1 \)[/tex]
[tex]\[ f(-1) = 2(-1)^3 + (-1)^2 - 2(-1) - 1 = -2 + 1 + 2 - 1 = 0 \][/tex]
So, [tex]\( x = -1 \)[/tex] is a rational zero.
3. Test [tex]\( x = \frac{1}{2} \)[/tex]
[tex]\[ f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right) - 1 = 2\left(\frac{1}{8}\right) + \left(\frac{1}{4}\right) - 1 - 1 \][/tex]
[tex]\[ = \frac{2}{8} + \frac{2}{8} - 1 - 1 = \frac{1}{4} + \frac{1}{4} - 1 - 1 = \frac{1}{2} - 2 = -\frac{3}{2} \neq 0 \][/tex]
So, [tex]\( x = \frac{1}{2} \)[/tex] is not a rational zero.
4. Test [tex]\( x = -\frac{1}{2} \)[/tex]
[tex]\[ f\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right)^3 + \left(-\frac{1}{2}\right)^2 - 2\left(-\frac{1}{2}\right) - 1 = -2\left(\frac{1}{8}\right) + \left(\frac{1}{4}\right) + 1 - 1 \][/tex]
[tex]\[ = -\frac{1}{4} + \frac{1}{4} + 1 - 1 = 0 \][/tex]
So, [tex]\( x = -\frac{1}{2} \)[/tex] is a rational zero.
### Step 4: List all rational zeros
We found the rational zeros by plugging the possible zeros into the polynomial:
[tex]\[ \text{Rational zeros} = \left\{ 1, -1, -\frac{1}{2} \right\} \][/tex]
Thus, the possible rational zeros for the polynomial [tex]\( f(x) = 2x^3 + x^2 - 2x - 1 \)[/tex] are [tex]\(\pm 1\)[/tex] and [tex]\(\pm \frac{1}{2}\)[/tex], and the actual rational zeros are [tex]\( x = 1, x = -1, \)[/tex] and [tex]\( x = -\frac{1}{2} \)[/tex].
### Step 1: Identify factors of the constant term and the leading coefficient
- Factors of [tex]\(-1\)[/tex]: [tex]\(\pm 1\)[/tex]
- Factors of [tex]\(2\)[/tex]: [tex]\(\pm 1, \pm 2\)[/tex]
### Step 2: List all possible rational zeros
The possible rational zeros are the fractions formed by dividing each factor of the constant term by each factor of the leading coefficient:
[tex]\[ \text{Possible rational zeros} = \left\{ \pm 1, \pm \frac{1}{2} \right\} \][/tex]
### Step 3: Test each possible rational zero
We will substitute each possible rational zero into the polynomial [tex]\( f(x) \)[/tex] to see if it equals zero.
1. Test [tex]\( x = 1 \)[/tex]
[tex]\[ f(1) = 2(1)^3 + (1)^2 - 2(1) - 1 = 2 + 1 - 2 - 1 = 0 \][/tex]
So, [tex]\( x = 1 \)[/tex] is a rational zero.
2. Test [tex]\( x = -1 \)[/tex]
[tex]\[ f(-1) = 2(-1)^3 + (-1)^2 - 2(-1) - 1 = -2 + 1 + 2 - 1 = 0 \][/tex]
So, [tex]\( x = -1 \)[/tex] is a rational zero.
3. Test [tex]\( x = \frac{1}{2} \)[/tex]
[tex]\[ f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right) - 1 = 2\left(\frac{1}{8}\right) + \left(\frac{1}{4}\right) - 1 - 1 \][/tex]
[tex]\[ = \frac{2}{8} + \frac{2}{8} - 1 - 1 = \frac{1}{4} + \frac{1}{4} - 1 - 1 = \frac{1}{2} - 2 = -\frac{3}{2} \neq 0 \][/tex]
So, [tex]\( x = \frac{1}{2} \)[/tex] is not a rational zero.
4. Test [tex]\( x = -\frac{1}{2} \)[/tex]
[tex]\[ f\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right)^3 + \left(-\frac{1}{2}\right)^2 - 2\left(-\frac{1}{2}\right) - 1 = -2\left(\frac{1}{8}\right) + \left(\frac{1}{4}\right) + 1 - 1 \][/tex]
[tex]\[ = -\frac{1}{4} + \frac{1}{4} + 1 - 1 = 0 \][/tex]
So, [tex]\( x = -\frac{1}{2} \)[/tex] is a rational zero.
### Step 4: List all rational zeros
We found the rational zeros by plugging the possible zeros into the polynomial:
[tex]\[ \text{Rational zeros} = \left\{ 1, -1, -\frac{1}{2} \right\} \][/tex]
Thus, the possible rational zeros for the polynomial [tex]\( f(x) = 2x^3 + x^2 - 2x - 1 \)[/tex] are [tex]\(\pm 1\)[/tex] and [tex]\(\pm \frac{1}{2}\)[/tex], and the actual rational zeros are [tex]\( x = 1, x = -1, \)[/tex] and [tex]\( x = -\frac{1}{2} \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.