IDNLearn.com is designed to help you find the answers you need quickly and easily. Find the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Certainly! Let's solve the problem step by step.
### Part (a): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis
We are asked to find the area between [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, bounded by the lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Define the Function and Limits of Integration:
- The function is [tex]\( y = 2x^2 \)[/tex].
- The area is bounded by [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
2. Set Up the Integral:
The area under the curve from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral:
[tex]\[ \text{Area} = \int_{1}^{3} 2x^2 \, dx \][/tex]
3. Evaluate the Integral:
- First, find the antiderivative of [tex]\( 2x^2 \)[/tex]:
[tex]\[ \int 2x^2 \, dx = \frac{2x^3}{3} + C \][/tex]
- Now, apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2x^3}{3} \right]_{1}^{3} \][/tex]
4. Compute the Value:
- Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2 \cdot 3^3}{3} = \frac{2 \cdot 27}{3} = 18 \][/tex]
- Evaluate at [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{2 \cdot 1^3}{3} = \frac{2}{3} \][/tex]
- Find the difference:
[tex]\[ \text{Area} = 18 - \frac{2}{3} = \frac{54}{3} - \frac{2}{3} = \frac{52}{3} \approx 17.333333333333332 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 17.33 \)[/tex] square units.
### Part (b): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis
For this part, we need to consider the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, bounded by the lines at [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Convert the Function to Solve for [tex]\( x \)[/tex]:
- The given function is [tex]\( y = 2x^2 \)[/tex].
- Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{\frac{y}{2}} \][/tex]
2. Define the Limits of Integration:
- From [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex]:
- At [tex]\( x = 1 \)[/tex], [tex]\( y = 2(1)^2 = 2 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( y = 2(3)^2 = 18 \)[/tex].
3. Set Up the Integral:
The area between the curve and the [tex]\( y \)[/tex]-axis from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral with respect to [tex]\( y \)[/tex]:
[tex]\[ \text{Area} = \int_{2}^{18} \sqrt{\frac{y}{2}} \, dy \][/tex]
4. Evaluate the Integral:
- Simplify the integrand [tex]\( \sqrt{\frac{y}{2}} \)[/tex]:
[tex]\[ \sqrt{\frac{y}{2}} = \frac{1}{\sqrt{2}} \sqrt{y} = \frac{y^{1/2}}{\sqrt{2}} \][/tex]
- The integral becomes:
[tex]\[ \int_{2}^{18} \frac{y^{1/2}}{\sqrt{2}} \, dy \][/tex]
- Find the antiderivative of [tex]\( \frac{y^{1/2}}{\sqrt{2}} \)[/tex]:
[tex]\[ \int \frac{y^{1/2}}{\sqrt{2}} \, dy = \frac{1}{\sqrt{2}} \cdot \frac{2}{3} y^{3/2} = \frac{2}{3\sqrt{2}} y^{3/2} + C \][/tex]
- Apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2}{3\sqrt{2}} y^{3/2} \right]_{2}^{18} \][/tex]
5. Compute the Value:
- Evaluate at [tex]\( y = 18 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (18)^{3/2} \][/tex]
- Evaluate at [tex]\( y = 2 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (2)^{3/2} \][/tex]
- The difference gives the area:
[tex]\[ \text{Area} = 4 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 4.0 \)[/tex] square units.
Thus, the final areas are:
- Part (a): [tex]\( 17.333 \)[/tex] square units.
- Part (b): [tex]\( 4.0 \)[/tex] square units.
### Part (a): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis
We are asked to find the area between [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, bounded by the lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Define the Function and Limits of Integration:
- The function is [tex]\( y = 2x^2 \)[/tex].
- The area is bounded by [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
2. Set Up the Integral:
The area under the curve from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral:
[tex]\[ \text{Area} = \int_{1}^{3} 2x^2 \, dx \][/tex]
3. Evaluate the Integral:
- First, find the antiderivative of [tex]\( 2x^2 \)[/tex]:
[tex]\[ \int 2x^2 \, dx = \frac{2x^3}{3} + C \][/tex]
- Now, apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2x^3}{3} \right]_{1}^{3} \][/tex]
4. Compute the Value:
- Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2 \cdot 3^3}{3} = \frac{2 \cdot 27}{3} = 18 \][/tex]
- Evaluate at [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{2 \cdot 1^3}{3} = \frac{2}{3} \][/tex]
- Find the difference:
[tex]\[ \text{Area} = 18 - \frac{2}{3} = \frac{54}{3} - \frac{2}{3} = \frac{52}{3} \approx 17.333333333333332 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 17.33 \)[/tex] square units.
### Part (b): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis
For this part, we need to consider the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, bounded by the lines at [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Convert the Function to Solve for [tex]\( x \)[/tex]:
- The given function is [tex]\( y = 2x^2 \)[/tex].
- Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{\frac{y}{2}} \][/tex]
2. Define the Limits of Integration:
- From [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex]:
- At [tex]\( x = 1 \)[/tex], [tex]\( y = 2(1)^2 = 2 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( y = 2(3)^2 = 18 \)[/tex].
3. Set Up the Integral:
The area between the curve and the [tex]\( y \)[/tex]-axis from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral with respect to [tex]\( y \)[/tex]:
[tex]\[ \text{Area} = \int_{2}^{18} \sqrt{\frac{y}{2}} \, dy \][/tex]
4. Evaluate the Integral:
- Simplify the integrand [tex]\( \sqrt{\frac{y}{2}} \)[/tex]:
[tex]\[ \sqrt{\frac{y}{2}} = \frac{1}{\sqrt{2}} \sqrt{y} = \frac{y^{1/2}}{\sqrt{2}} \][/tex]
- The integral becomes:
[tex]\[ \int_{2}^{18} \frac{y^{1/2}}{\sqrt{2}} \, dy \][/tex]
- Find the antiderivative of [tex]\( \frac{y^{1/2}}{\sqrt{2}} \)[/tex]:
[tex]\[ \int \frac{y^{1/2}}{\sqrt{2}} \, dy = \frac{1}{\sqrt{2}} \cdot \frac{2}{3} y^{3/2} = \frac{2}{3\sqrt{2}} y^{3/2} + C \][/tex]
- Apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2}{3\sqrt{2}} y^{3/2} \right]_{2}^{18} \][/tex]
5. Compute the Value:
- Evaluate at [tex]\( y = 18 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (18)^{3/2} \][/tex]
- Evaluate at [tex]\( y = 2 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (2)^{3/2} \][/tex]
- The difference gives the area:
[tex]\[ \text{Area} = 4 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 4.0 \)[/tex] square units.
Thus, the final areas are:
- Part (a): [tex]\( 17.333 \)[/tex] square units.
- Part (b): [tex]\( 4.0 \)[/tex] square units.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.