From health tips to tech hacks, find it all on IDNLearn.com. Discover in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
To calculate the enthalpy of combustion of 1 mole of acetylene ([tex]\( \text{C}_2\text{H}_2 \)[/tex]), we will use the given standard enthalpies of formation ([tex]\( \Delta H_f \)[/tex]) from the table. The reaction we are considering is:
[tex]\[ 2 \text{C}_2\text{H}_2 + 5 \text{O}_2 \rightarrow 4 \text{CO}_2 + 2 \text{H}_2\text{O} \][/tex]
First, we need to determine the enthalpy change for the combustion of 2 moles of acetylene by finding the enthalpy change of the reactants and products.
### Step 1: Calculate the enthalpy of the reactants
The reactants are 2 moles of acetylene ([tex]\( \text{C}_2\text{H}_2 \)[/tex]) and 5 moles of oxygen ([tex]\( \text{O}_2 \)[/tex]). Since oxygen is in its standard state, its enthalpy of formation is zero:
[tex]\[ \Delta H_{\text{reactants}} = 2 \times \Delta H_f \left( \text{C}_2\text{H}_2 \right) + 5 \times \Delta H_f \left( \text{O}_2 \right) \][/tex]
From the table, [tex]\( \Delta H_f \left( \text{C}_2\text{H}_2 \right) = 226.8 \, \text{kJ/mol} \)[/tex] and [tex]\( \Delta H_f \left( \text{O}_2 \right) = 0 \, \text{kJ/mol} \)[/tex]:
[tex]\[ \Delta H_{\text{reactants}} = 2 \times 226.8 + 5 \times 0 = 453.6 \, \text{kJ} \][/tex]
### Step 2: Calculate the enthalpy of the products
The products are 4 moles of carbon dioxide ([tex]\( \text{CO}_2 \)[/tex]) and 2 moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]):
[tex]\[ \Delta H_{\text{products}} = 4 \times \Delta H_f \left( \text{CO}_2 \right) + 2 \times \Delta H_f \left( \text{H}_2\text{O} \right) \][/tex]
From the table, [tex]\( \Delta H_f \left( \text{CO}_2 \right) = -393.5 \, \text{kJ/mol} \)[/tex] and [tex]\( \Delta H_f \left( \text{H}_2\text{O} \right) = -241.8 \, \text{kJ/mol} \)[/tex]:
[tex]\[ \Delta H_{\text{products}} = 4 \times (-393.5) + 2 \times (-241.8) = -1574.0 + (-483.6) = -2057.6 \, \text{kJ} \][/tex]
### Step 3: Calculate the enthalpy change for the reaction
The enthalpy change ([tex]\( \Delta H_{\text{combustion}} \)[/tex]) for the combustion of 2 moles of acetylene is the difference between the enthalpy of the products and the reactants:
[tex]\[ \Delta H_{\text{combustion}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} = -2057.6 - 453.6 = -2511.2 \, \text{kJ} \][/tex]
### Step 4: Calculate the enthalpy of combustion per mole of acetylene
Since this enthalpy change is for 2 moles of acetylene, we need to divide by 2 to find the enthalpy change for 1 mole of acetylene:
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{\Delta H_{\text{combustion}}}{2} = \frac{-2511.2}{2} = -1255.6 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy of combustion of 1 mole of acetylene is [tex]\( \boxed{-1255.6 \, \text{kJ/mol}} \)[/tex].
[tex]\[ 2 \text{C}_2\text{H}_2 + 5 \text{O}_2 \rightarrow 4 \text{CO}_2 + 2 \text{H}_2\text{O} \][/tex]
First, we need to determine the enthalpy change for the combustion of 2 moles of acetylene by finding the enthalpy change of the reactants and products.
### Step 1: Calculate the enthalpy of the reactants
The reactants are 2 moles of acetylene ([tex]\( \text{C}_2\text{H}_2 \)[/tex]) and 5 moles of oxygen ([tex]\( \text{O}_2 \)[/tex]). Since oxygen is in its standard state, its enthalpy of formation is zero:
[tex]\[ \Delta H_{\text{reactants}} = 2 \times \Delta H_f \left( \text{C}_2\text{H}_2 \right) + 5 \times \Delta H_f \left( \text{O}_2 \right) \][/tex]
From the table, [tex]\( \Delta H_f \left( \text{C}_2\text{H}_2 \right) = 226.8 \, \text{kJ/mol} \)[/tex] and [tex]\( \Delta H_f \left( \text{O}_2 \right) = 0 \, \text{kJ/mol} \)[/tex]:
[tex]\[ \Delta H_{\text{reactants}} = 2 \times 226.8 + 5 \times 0 = 453.6 \, \text{kJ} \][/tex]
### Step 2: Calculate the enthalpy of the products
The products are 4 moles of carbon dioxide ([tex]\( \text{CO}_2 \)[/tex]) and 2 moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]):
[tex]\[ \Delta H_{\text{products}} = 4 \times \Delta H_f \left( \text{CO}_2 \right) + 2 \times \Delta H_f \left( \text{H}_2\text{O} \right) \][/tex]
From the table, [tex]\( \Delta H_f \left( \text{CO}_2 \right) = -393.5 \, \text{kJ/mol} \)[/tex] and [tex]\( \Delta H_f \left( \text{H}_2\text{O} \right) = -241.8 \, \text{kJ/mol} \)[/tex]:
[tex]\[ \Delta H_{\text{products}} = 4 \times (-393.5) + 2 \times (-241.8) = -1574.0 + (-483.6) = -2057.6 \, \text{kJ} \][/tex]
### Step 3: Calculate the enthalpy change for the reaction
The enthalpy change ([tex]\( \Delta H_{\text{combustion}} \)[/tex]) for the combustion of 2 moles of acetylene is the difference between the enthalpy of the products and the reactants:
[tex]\[ \Delta H_{\text{combustion}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} = -2057.6 - 453.6 = -2511.2 \, \text{kJ} \][/tex]
### Step 4: Calculate the enthalpy of combustion per mole of acetylene
Since this enthalpy change is for 2 moles of acetylene, we need to divide by 2 to find the enthalpy change for 1 mole of acetylene:
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{\Delta H_{\text{combustion}}}{2} = \frac{-2511.2}{2} = -1255.6 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy of combustion of 1 mole of acetylene is [tex]\( \boxed{-1255.6 \, \text{kJ/mol}} \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.