Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.
Sagot :
To find the acceleration of the sled and the normal force acting on it, we need to analyze the forces acting on the sled. Let's break down the steps:
1. Identifying Forces:
- Mass of the sled, [tex]\( m \)[/tex]: 8 kg
- Pulling force, [tex]\( F_{\text{pull}} \)[/tex]: 20 N
- Angle of pulling force, [tex]\( \theta \)[/tex]: 50 degrees
- Force of friction, [tex]\( F_{\text{friction}} \)[/tex]: 2.4 N
2. Horizontal and Vertical Components of the Pulling Force:
- The horizontal component ([tex]\( F_{\text{horizontal}} \)[/tex]) of the pulling force can be calculated using the cosine of the angle:
[tex]\[ F_{\text{horizontal}} = F_{\text{pull}} \cdot \cos(\theta) \][/tex]
- The vertical component ([tex]\( F_{\text{vertical}} \)[/tex]) of the pulling force can be calculated using the sine of the angle:
[tex]\[ F_{\text{vertical}} = F_{\text{pull}} \cdot \sin(\theta) \][/tex]
3. Calculating the Normal Force ( [tex]\( F_{\text{normal}} \)[/tex]):
- The weight of the sled ([tex]\( F_{\text{gravity}} \)[/tex]) is:
[tex]\[ F_{\text{gravity}} = m \cdot g \][/tex]
where [tex]\( g \)[/tex] (acceleration due to gravity) is approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
- The normal force is affected by the vertical component of the pulling force. Thus, the normal force ([tex]\( F_{\text{normal}} \)[/tex]) is:
[tex]\[ F_{\text{normal}} = F_{\text{gravity}} - F_{\text{vertical}} \][/tex]
4. Calculating the Total Horizontal Force:
- The total horizontal force is the horizontal component of the pulling force minus the force of friction:
[tex]\[ F_{\text{total-horizontal}} = F_{\text{horizontal}} - F_{\text{friction}} \][/tex]
5. Calculating the Acceleration:
- According to Newton’s second law ([tex]\( F = ma \)[/tex]), the acceleration [tex]\( a \)[/tex] can be found by:
[tex]\[ a = \frac{F_{\text{total-horizontal}}}{m} \][/tex]
Let's put these steps together to determine the values:
- Step 2: Components of Pulling Force
[tex]\[ F_{\text{horizontal}} = 20 \cdot \cos(50^\circ) \approx 12.86 \, \text{N} \][/tex]
[tex]\[ F_{\text{vertical}} = 20 \cdot \sin(50^\circ) \approx 15.32 \, \text{N} \][/tex]
- Step 3: Normal Force
[tex]\[ F_{\text{gravity}} = 8 \cdot 9.8 = 78.4 \, \text{N} \][/tex]
[tex]\[ F_{\text{normal}} = 78.4 - 15.32 = 63.08 \, \text{N} \][/tex]
- Step 4: Total Horizontal Force
[tex]\[ F_{\text{total-horizontal}} = 12.86 - 2.4 = 10.46 \, \text{N} \][/tex]
- Step 5: Acceleration
[tex]\[ a = \frac{10.46}{8} \approx 1.31 \, \text{m/s}^2 \][/tex]
Rounding these values to the nearest tenth, we get:
- The acceleration [tex]\( a \approx 1.3 \, \text{m/s}^2 \)[/tex]
- The normal force [tex]\( F_{\text{normal}} \approx 63.1 \, \text{N} \)[/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{a = 1.3 \, \text{m/s}^2, \, F_{\text{normal}} = 63.1 \, \text{N}} \][/tex]
1. Identifying Forces:
- Mass of the sled, [tex]\( m \)[/tex]: 8 kg
- Pulling force, [tex]\( F_{\text{pull}} \)[/tex]: 20 N
- Angle of pulling force, [tex]\( \theta \)[/tex]: 50 degrees
- Force of friction, [tex]\( F_{\text{friction}} \)[/tex]: 2.4 N
2. Horizontal and Vertical Components of the Pulling Force:
- The horizontal component ([tex]\( F_{\text{horizontal}} \)[/tex]) of the pulling force can be calculated using the cosine of the angle:
[tex]\[ F_{\text{horizontal}} = F_{\text{pull}} \cdot \cos(\theta) \][/tex]
- The vertical component ([tex]\( F_{\text{vertical}} \)[/tex]) of the pulling force can be calculated using the sine of the angle:
[tex]\[ F_{\text{vertical}} = F_{\text{pull}} \cdot \sin(\theta) \][/tex]
3. Calculating the Normal Force ( [tex]\( F_{\text{normal}} \)[/tex]):
- The weight of the sled ([tex]\( F_{\text{gravity}} \)[/tex]) is:
[tex]\[ F_{\text{gravity}} = m \cdot g \][/tex]
where [tex]\( g \)[/tex] (acceleration due to gravity) is approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
- The normal force is affected by the vertical component of the pulling force. Thus, the normal force ([tex]\( F_{\text{normal}} \)[/tex]) is:
[tex]\[ F_{\text{normal}} = F_{\text{gravity}} - F_{\text{vertical}} \][/tex]
4. Calculating the Total Horizontal Force:
- The total horizontal force is the horizontal component of the pulling force minus the force of friction:
[tex]\[ F_{\text{total-horizontal}} = F_{\text{horizontal}} - F_{\text{friction}} \][/tex]
5. Calculating the Acceleration:
- According to Newton’s second law ([tex]\( F = ma \)[/tex]), the acceleration [tex]\( a \)[/tex] can be found by:
[tex]\[ a = \frac{F_{\text{total-horizontal}}}{m} \][/tex]
Let's put these steps together to determine the values:
- Step 2: Components of Pulling Force
[tex]\[ F_{\text{horizontal}} = 20 \cdot \cos(50^\circ) \approx 12.86 \, \text{N} \][/tex]
[tex]\[ F_{\text{vertical}} = 20 \cdot \sin(50^\circ) \approx 15.32 \, \text{N} \][/tex]
- Step 3: Normal Force
[tex]\[ F_{\text{gravity}} = 8 \cdot 9.8 = 78.4 \, \text{N} \][/tex]
[tex]\[ F_{\text{normal}} = 78.4 - 15.32 = 63.08 \, \text{N} \][/tex]
- Step 4: Total Horizontal Force
[tex]\[ F_{\text{total-horizontal}} = 12.86 - 2.4 = 10.46 \, \text{N} \][/tex]
- Step 5: Acceleration
[tex]\[ a = \frac{10.46}{8} \approx 1.31 \, \text{m/s}^2 \][/tex]
Rounding these values to the nearest tenth, we get:
- The acceleration [tex]\( a \approx 1.3 \, \text{m/s}^2 \)[/tex]
- The normal force [tex]\( F_{\text{normal}} \approx 63.1 \, \text{N} \)[/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{a = 1.3 \, \text{m/s}^2, \, F_{\text{normal}} = 63.1 \, \text{N}} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.