From tech troubles to travel tips, IDNLearn.com has answers to all your questions. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
To determine the speed of a proton that has a de Broglie wavelength of 129 picometers (pm), we need to use the de Broglie equation which links the momentum of a particle with its wavelength. The de Broglie wavelength [tex]\( \lambda \)[/tex] for a particle with momentum [tex]\( p \)[/tex] is given by:
[tex]\[ \lambda = \frac{h}{p} \][/tex]
where:
- [tex]\( \lambda \)[/tex] is the de Broglie wavelength,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.626 \times 10^{-34} \)[/tex] Js),
- [tex]\( p \)[/tex] is the momentum of the particle.
The momentum [tex]\( p \)[/tex] of a particle with mass [tex]\( m \)[/tex] and velocity [tex]\( v \)[/tex] is given by:
[tex]\[ p = mv \][/tex]
Therefore, substituting [tex]\( p = mv \)[/tex] into the de Broglie equation, we get:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
Solving for the velocity [tex]\( v \)[/tex], we have:
[tex]\[ v = \frac{h}{m \lambda} \][/tex]
Given:
- Planck's constant, [tex]\( h = 6.626 \times 10^{-34} \)[/tex] Js,
- Proton mass, [tex]\( m = 1.673 \times 10^{-27} \)[/tex] kg,
- de Broglie wavelength, [tex]\( \lambda = 129 \)[/tex] pm [tex]\( = 129 \times 10^{-12} \)[/tex] meters,
We can now plug these values into the equation to find the speed [tex]\( v \)[/tex]:
[tex]\[ v = \frac{6.626 \times 10^{-34}}{1.673 \times 10^{-27} \times 129 \times 10^{-12}} \][/tex]
When we substitute these values and perform the calculation:
[tex]\[ v \approx 3070.193728946283 \][/tex]
Thus, the speed of the proton is approximately [tex]\( 3070.19 \)[/tex] meters per second.
[tex]\[ \lambda = \frac{h}{p} \][/tex]
where:
- [tex]\( \lambda \)[/tex] is the de Broglie wavelength,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.626 \times 10^{-34} \)[/tex] Js),
- [tex]\( p \)[/tex] is the momentum of the particle.
The momentum [tex]\( p \)[/tex] of a particle with mass [tex]\( m \)[/tex] and velocity [tex]\( v \)[/tex] is given by:
[tex]\[ p = mv \][/tex]
Therefore, substituting [tex]\( p = mv \)[/tex] into the de Broglie equation, we get:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
Solving for the velocity [tex]\( v \)[/tex], we have:
[tex]\[ v = \frac{h}{m \lambda} \][/tex]
Given:
- Planck's constant, [tex]\( h = 6.626 \times 10^{-34} \)[/tex] Js,
- Proton mass, [tex]\( m = 1.673 \times 10^{-27} \)[/tex] kg,
- de Broglie wavelength, [tex]\( \lambda = 129 \)[/tex] pm [tex]\( = 129 \times 10^{-12} \)[/tex] meters,
We can now plug these values into the equation to find the speed [tex]\( v \)[/tex]:
[tex]\[ v = \frac{6.626 \times 10^{-34}}{1.673 \times 10^{-27} \times 129 \times 10^{-12}} \][/tex]
When we substitute these values and perform the calculation:
[tex]\[ v \approx 3070.193728946283 \][/tex]
Thus, the speed of the proton is approximately [tex]\( 3070.19 \)[/tex] meters per second.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.