Explore a diverse range of topics and get answers from knowledgeable individuals on IDNLearn.com. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.

16 of 16

Review Constants Periodic Table

Transition: [tex]n=4 \rightarrow n=3[/tex]

Express your answer in inverse seconds to three significant figures.

Begin by calculating the energy difference between two energy levels ([tex]\Delta E_{\text {atom }}[/tex]) using the following equation:

[tex]
\Delta E_{\text {atom }} = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{n_3^2} - \frac{1}{n_4^2} \right)
[/tex]

Submit your answer.


Sagot :

To solve the problem where an electron transitions from the [tex]\( n=4 \)[/tex] energy level to the [tex]\( n=3 \)[/tex] energy level in a hydrogen atom, we need to calculate the energy difference ([tex]\(\Delta E\)[/tex]) and the corresponding frequency ([tex]\( \nu \)[/tex]) of the emitted photon.

### Step 1: Calculate the Energy Difference ([tex]\(\Delta E\)[/tex])
We use the formula:
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{n_\text{final}^2} - \frac{1}{n_\text{initial}^2} \right) \][/tex]

Let's plug in the values:
- [tex]\( n_\text{initial} = 4 \)[/tex]
- [tex]\( n_\text{final} = 3 \)[/tex]

So, the calculation becomes:
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{3^2} - \frac{1}{4^2} \right) \][/tex]
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{9} - \frac{1}{16} \right) \][/tex]

Simplify the fractions:
[tex]\[ \frac{1}{9} = 0.1111\ldots \quad \text{and} \quad \frac{1}{16} = 0.0625 \][/tex]

Then:
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( 0.1111\ldots - 0.0625 \right) \][/tex]
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( 0.0486\ldots \right) \][/tex]
The energy difference is:
[tex]\[ \Delta E = -1.05972222222 \times 10^{-19} \, \text{J} \][/tex]

### Step 2: Calculate the Frequency ([tex]\( \nu \)[/tex])
Using the formula:
[tex]\[ \Delta E = h \cdot \nu \][/tex]

Where [tex]\( h \)[/tex] is the Planck's constant ([tex]\( h = 6.62607015 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]). To find the frequency ([tex]\( \nu \)[/tex]):
[tex]\[ \nu = \frac{\Delta E}{h} \][/tex]

Substitute the known values:
[tex]\[ \nu = \frac{1.05972222222 \times 10^{-19} \, \text{J}}{6.62607015 \times 10^{-34} \, \text{J} \cdot \text{s}} \][/tex]

Perform the division:
[tex]\[ \nu = 159932237092633.56 \, \text{Hz} \][/tex]

### Step 3: Express the Frequency to Three Significant Figures
Round the result to three significant figures:
[tex]\[ \nu \approx 1.60 \times 10^{14} \, \text{Hz} \][/tex]

### Solution Summary
- The energy difference ([tex]\(\Delta E\)[/tex]) is [tex]\(-1.06 \times 10^{-19} \, \text{J}\)[/tex] (approximated to three significant figures).
- The frequency ([tex]\(\nu\)[/tex]) of the emitted photon is [tex]\( 1.60 \times 10^{14} \, \text{Hz} \)[/tex] (to three significant figures).