Explore a diverse range of topics and get answers from knowledgeable individuals on IDNLearn.com. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
To solve the problem where an electron transitions from the [tex]\( n=4 \)[/tex] energy level to the [tex]\( n=3 \)[/tex] energy level in a hydrogen atom, we need to calculate the energy difference ([tex]\(\Delta E\)[/tex]) and the corresponding frequency ([tex]\( \nu \)[/tex]) of the emitted photon.
### Step 1: Calculate the Energy Difference ([tex]\(\Delta E\)[/tex])
We use the formula:
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{n_\text{final}^2} - \frac{1}{n_\text{initial}^2} \right) \][/tex]
Let's plug in the values:
- [tex]\( n_\text{initial} = 4 \)[/tex]
- [tex]\( n_\text{final} = 3 \)[/tex]
So, the calculation becomes:
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{3^2} - \frac{1}{4^2} \right) \][/tex]
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{9} - \frac{1}{16} \right) \][/tex]
Simplify the fractions:
[tex]\[ \frac{1}{9} = 0.1111\ldots \quad \text{and} \quad \frac{1}{16} = 0.0625 \][/tex]
Then:
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( 0.1111\ldots - 0.0625 \right) \][/tex]
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( 0.0486\ldots \right) \][/tex]
The energy difference is:
[tex]\[ \Delta E = -1.05972222222 \times 10^{-19} \, \text{J} \][/tex]
### Step 2: Calculate the Frequency ([tex]\( \nu \)[/tex])
Using the formula:
[tex]\[ \Delta E = h \cdot \nu \][/tex]
Where [tex]\( h \)[/tex] is the Planck's constant ([tex]\( h = 6.62607015 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]). To find the frequency ([tex]\( \nu \)[/tex]):
[tex]\[ \nu = \frac{\Delta E}{h} \][/tex]
Substitute the known values:
[tex]\[ \nu = \frac{1.05972222222 \times 10^{-19} \, \text{J}}{6.62607015 \times 10^{-34} \, \text{J} \cdot \text{s}} \][/tex]
Perform the division:
[tex]\[ \nu = 159932237092633.56 \, \text{Hz} \][/tex]
### Step 3: Express the Frequency to Three Significant Figures
Round the result to three significant figures:
[tex]\[ \nu \approx 1.60 \times 10^{14} \, \text{Hz} \][/tex]
### Solution Summary
- The energy difference ([tex]\(\Delta E\)[/tex]) is [tex]\(-1.06 \times 10^{-19} \, \text{J}\)[/tex] (approximated to three significant figures).
- The frequency ([tex]\(\nu\)[/tex]) of the emitted photon is [tex]\( 1.60 \times 10^{14} \, \text{Hz} \)[/tex] (to three significant figures).
### Step 1: Calculate the Energy Difference ([tex]\(\Delta E\)[/tex])
We use the formula:
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{n_\text{final}^2} - \frac{1}{n_\text{initial}^2} \right) \][/tex]
Let's plug in the values:
- [tex]\( n_\text{initial} = 4 \)[/tex]
- [tex]\( n_\text{final} = 3 \)[/tex]
So, the calculation becomes:
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{3^2} - \frac{1}{4^2} \right) \][/tex]
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( \frac{1}{9} - \frac{1}{16} \right) \][/tex]
Simplify the fractions:
[tex]\[ \frac{1}{9} = 0.1111\ldots \quad \text{and} \quad \frac{1}{16} = 0.0625 \][/tex]
Then:
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( 0.1111\ldots - 0.0625 \right) \][/tex]
[tex]\[ \Delta E = -2.18 \times 10^{-18} \, \text{J} \left( 0.0486\ldots \right) \][/tex]
The energy difference is:
[tex]\[ \Delta E = -1.05972222222 \times 10^{-19} \, \text{J} \][/tex]
### Step 2: Calculate the Frequency ([tex]\( \nu \)[/tex])
Using the formula:
[tex]\[ \Delta E = h \cdot \nu \][/tex]
Where [tex]\( h \)[/tex] is the Planck's constant ([tex]\( h = 6.62607015 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]). To find the frequency ([tex]\( \nu \)[/tex]):
[tex]\[ \nu = \frac{\Delta E}{h} \][/tex]
Substitute the known values:
[tex]\[ \nu = \frac{1.05972222222 \times 10^{-19} \, \text{J}}{6.62607015 \times 10^{-34} \, \text{J} \cdot \text{s}} \][/tex]
Perform the division:
[tex]\[ \nu = 159932237092633.56 \, \text{Hz} \][/tex]
### Step 3: Express the Frequency to Three Significant Figures
Round the result to three significant figures:
[tex]\[ \nu \approx 1.60 \times 10^{14} \, \text{Hz} \][/tex]
### Solution Summary
- The energy difference ([tex]\(\Delta E\)[/tex]) is [tex]\(-1.06 \times 10^{-19} \, \text{J}\)[/tex] (approximated to three significant figures).
- The frequency ([tex]\(\nu\)[/tex]) of the emitted photon is [tex]\( 1.60 \times 10^{14} \, \text{Hz} \)[/tex] (to three significant figures).
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.