Connect with a global community of experts on IDNLearn.com. Our experts provide timely and precise responses to help you understand and solve any issue you face.
Sagot :
To calculate the frequency of the light emitted when an electron in a hydrogen atom transitions from [tex]\( n=4 \)[/tex] to [tex]\( n=3 \)[/tex], follow these steps:
1. Identify the constants involved:
- Planck constant, [tex]\( h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]
- Speed of light, [tex]\( c = 3.0 \times 10^8 \, \text{m/s} \)[/tex]
- Rydberg constant, [tex]\( R = 1.097 \times 10^7 \, \text{m}^{-1} \)[/tex]
2. Transition levels:
- Initial level, [tex]\( n_1 = 4 \)[/tex]
- Final level, [tex]\( n_2 = 3 \)[/tex]
3. Use the Rydberg formula to calculate the energy difference:
The energy difference [tex]\( \Delta E \)[/tex] between two levels in a hydrogen atom is given by:
[tex]\[ \Delta E = R h c \left( \frac{1}{n_2^2} - \frac{1}{n_1^2} \right) \][/tex]
Plugging in the values:
[tex]\[ \Delta E = (1.097 \times 10^7 \, \text{m}^{-1}) \times (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.0 \times 10^8 \, \text{m/s}) \times \left( \frac{1}{3^2} - \frac{1}{4^2} \right) \][/tex]
4. Calculate the difference in fractions:
[tex]\[ \frac{1}{3^2} - \frac{1}{4^2} = \frac{1}{9} - \frac{1}{16} \][/tex]
[tex]\[ \frac{1}{9} = 0.1111 \quad \text{and} \quad \frac{1}{16} = 0.0625 \][/tex]
[tex]\[ 0.1111 - 0.0625 = 0.0486 \][/tex]
5. Continue to compute [tex]\(\Delta E\)[/tex]:
[tex]\[ \Delta E = (1.097 \times 10^7) \times (6.626 \times 10^{-34}) \times (3.0 \times 10^8) \times 0.0486 \][/tex]
[tex]\[ \Delta E \approx 1.060 \times 10^{-19} \, \text{J} \][/tex]
6. Calculate the frequency of the emitted light:
The frequency ([tex]\( \nu \)[/tex]) of the emitted light can be found using the energy relationship:
[tex]\[ \Delta E = h \nu \][/tex]
Solving for [tex]\( \nu \)[/tex]:
[tex]\[ \nu = \frac{\Delta E}{h} \][/tex]
Substituting the values:
[tex]\[ \nu = \frac{1.060 \times 10^{-19} \, \text{J}}{6.626 \times 10^{-34} \, \text{J} \cdot \text{s}} \][/tex]
[tex]\[ \nu \approx 1.600 \times 10^{14} \, \text{Hz} \][/tex]
[tex]\[ \nu \approx 1.5998 \times 10^{14} \, \text{Hz} \][/tex]
Therefore, the frequency of the emitted light when the electron transitions from [tex]\( n=4 \)[/tex] to [tex]\( n=3 \)[/tex] in a hydrogen atom is approximately [tex]\( 1.5998 \times 10^{14} \, \text{Hz} \)[/tex]. The energy difference corresponding to this transition is approximately [tex]\( 1.060 \times 10^{-19} \, \text{J} \)[/tex].
1. Identify the constants involved:
- Planck constant, [tex]\( h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]
- Speed of light, [tex]\( c = 3.0 \times 10^8 \, \text{m/s} \)[/tex]
- Rydberg constant, [tex]\( R = 1.097 \times 10^7 \, \text{m}^{-1} \)[/tex]
2. Transition levels:
- Initial level, [tex]\( n_1 = 4 \)[/tex]
- Final level, [tex]\( n_2 = 3 \)[/tex]
3. Use the Rydberg formula to calculate the energy difference:
The energy difference [tex]\( \Delta E \)[/tex] between two levels in a hydrogen atom is given by:
[tex]\[ \Delta E = R h c \left( \frac{1}{n_2^2} - \frac{1}{n_1^2} \right) \][/tex]
Plugging in the values:
[tex]\[ \Delta E = (1.097 \times 10^7 \, \text{m}^{-1}) \times (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.0 \times 10^8 \, \text{m/s}) \times \left( \frac{1}{3^2} - \frac{1}{4^2} \right) \][/tex]
4. Calculate the difference in fractions:
[tex]\[ \frac{1}{3^2} - \frac{1}{4^2} = \frac{1}{9} - \frac{1}{16} \][/tex]
[tex]\[ \frac{1}{9} = 0.1111 \quad \text{and} \quad \frac{1}{16} = 0.0625 \][/tex]
[tex]\[ 0.1111 - 0.0625 = 0.0486 \][/tex]
5. Continue to compute [tex]\(\Delta E\)[/tex]:
[tex]\[ \Delta E = (1.097 \times 10^7) \times (6.626 \times 10^{-34}) \times (3.0 \times 10^8) \times 0.0486 \][/tex]
[tex]\[ \Delta E \approx 1.060 \times 10^{-19} \, \text{J} \][/tex]
6. Calculate the frequency of the emitted light:
The frequency ([tex]\( \nu \)[/tex]) of the emitted light can be found using the energy relationship:
[tex]\[ \Delta E = h \nu \][/tex]
Solving for [tex]\( \nu \)[/tex]:
[tex]\[ \nu = \frac{\Delta E}{h} \][/tex]
Substituting the values:
[tex]\[ \nu = \frac{1.060 \times 10^{-19} \, \text{J}}{6.626 \times 10^{-34} \, \text{J} \cdot \text{s}} \][/tex]
[tex]\[ \nu \approx 1.600 \times 10^{14} \, \text{Hz} \][/tex]
[tex]\[ \nu \approx 1.5998 \times 10^{14} \, \text{Hz} \][/tex]
Therefore, the frequency of the emitted light when the electron transitions from [tex]\( n=4 \)[/tex] to [tex]\( n=3 \)[/tex] in a hydrogen atom is approximately [tex]\( 1.5998 \times 10^{14} \, \text{Hz} \)[/tex]. The energy difference corresponding to this transition is approximately [tex]\( 1.060 \times 10^{-19} \, \text{J} \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.