Discover the best answers to your questions with the help of IDNLearn.com. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.

Calculate the frequency of the light emitted when an electron in a hydrogen atom makes the following transition:

[tex]\[ n = 5 \rightarrow n = 1 \][/tex]

Use the formula:

[tex]\[ -2.18 \times 10^{-10} y\left(\frac{1}{3^2} - \frac{1}{4^2}\right) \][/tex]


Sagot :

Sure, let's solve the problem step by step.

When an electron in a hydrogen atom transitions from a higher energy level ([tex]\( n_{initial} \)[/tex]) to a lower energy level ([tex]\( n_{final} \)[/tex]), it emits light of a specific wavelength. The wavelength ([tex]\( \lambda \)[/tex]) can be calculated using the Rydberg formula:

[tex]\[ \frac{1}{\lambda} = R \left( \frac{1}{n_{final}^2} - \frac{1}{n_{initial}^2} \right) \][/tex]

where:

- [tex]\( R \)[/tex] is the Rydberg constant ([tex]\( 1.097373 \times 10^7 \, \text{m}^{-1} \)[/tex])
- [tex]\( n_{initial} \)[/tex] is the initial energy level of the electron (5 in this case)
- [tex]\( n_{final} \)[/tex] is the final energy level of the electron (1 in this case)

1. Calculate the change in energy levels:

[tex]\[ \frac{1}{5^2} = \frac{1}{25} \][/tex]
[tex]\[ \frac{1}{1^2} = 1 \][/tex]

So the change in terms of squared energy levels is:

[tex]\[ \frac{1}{n_{final}^2} - \frac{1}{n_{initial}^2} = 1 - \frac{1}{25} \][/tex]
[tex]\[ = 1 - 0.04 \][/tex]
[tex]\[ = 0.96 \][/tex]

2. Using the Rydberg formula, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:

[tex]\[ \frac{1}{\lambda} = 1.097373 \times 10^7 \times 0.96 \][/tex]
[tex]\[ = 1.05347728 \times 10^7 \, \text{m}^{-1} \][/tex]

3. Determine the wavelength [tex]\( \lambda \)[/tex]:

[tex]\[ \lambda = \frac{1}{1.05347728 \times 10^7} \][/tex]
[tex]\[ \lambda \approx 9.492366466704273 \times 10^{-8} \, \text{meters} \][/tex]
[tex]\[ \lambda \approx 94.92 \, \text{nm} \][/tex] (Note: [tex]\( 1 \, nm = 10^{-9} \, m \)[/tex])

4. Calculate the frequency ([tex]\( f \)[/tex]) of the light emitted:

Frequency ([tex]\( f \)[/tex]) can be found using the relationship between the speed of light [tex]\( c \)[/tex] and the wavelength [tex]\( \lambda \)[/tex]:

[tex]\[ c = \lambda f \][/tex]

where:

- [tex]\( c \)[/tex] is the speed of light ([tex]\( 3.0 \times 10^8 \, \text{m/s} \)[/tex])
- [tex]\( \lambda \)[/tex] is the wavelength (from the previous step)

Rearranging to solve for [tex]\( f \)[/tex]:

[tex]\[ f = \frac{c}{\lambda} \][/tex]
[tex]\[ = \frac{3.0 \times 10^8}{9.492366466704273 \times 10^{-8}} \][/tex]
[tex]\[ \approx 3.16043424 \times 10^{15} \, \text{Hz} \][/tex]

Therefore, the wavelength of the light emitted during the electron transition from [tex]\( n=5 \)[/tex] to [tex]\( n=1 \)[/tex] is approximately [tex]\( 9.492366466704273 \times 10^{-8} \)[/tex] meters (or 94.92 nm), and the frequency of the light is approximately [tex]\( 3.16043424 \times 10^{15} \)[/tex] Hz.