IDNLearn.com offers a comprehensive solution for all your question and answer needs. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
Let's solve this problem step-by-step.
We're given the following data:
1. Charge [tex]\( q_1 = 6.33 \mu C \)[/tex]
2. Force [tex]\( F = 0.115 \, N \)[/tex]
3. Distance [tex]\( r = 1.44 \, m \)[/tex]
4. Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, N \, m^2 / C^2 \)[/tex]
The goal is to find the value of the second charge [tex]\( q_2 \)[/tex].
1. Convert the given charge [tex]\( q_1 \)[/tex] from microcoulombs to coulombs:
[tex]\[ q_1 = 6.33 \, \mu C \times 10^{-6} = 6.33 \times 10^{-6} \, C \][/tex]
2. Use Coulomb's Law:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
We need to solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot q_1} \][/tex]
3. Substitute the given values into the equation:
[tex]\[ q_2 = \frac{0.115 \, N \cdot (1.44 \, m)^2}{(8.99 \times 10^9 \, N \, m^2 / C^2) \cdot (6.33 \times 10^{-6} \, C)} \][/tex]
4. Calculate [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{0.115 \cdot 2.0736}{8.99 \times 10^9 \cdot 6.33 \times 10^{-6}} \][/tex]
[tex]\[ q_2 \approx \frac{0.238464}{56.967 \times 10^3} \][/tex]
[tex]\[ q_2 \approx 4.190438032779971 \times 10^{-6} \, C \][/tex]
5. Convert the result back to microcoulombs:
[tex]\[ q_2 \approx 4.190438032779971 \, \mu C \][/tex]
### Conclusion
The value of the second charge [tex]\( q_2 \)[/tex] is approximately [tex]\( 4.19 \, \mu C \)[/tex]. Since it is attracting the positive charge [tex]\( q_1 \)[/tex], [tex]\( q_2 \)[/tex] must be a negative charge. Therefore, [tex]\( q_2 \approx -4.19 \, \mu C \)[/tex].
We're given the following data:
1. Charge [tex]\( q_1 = 6.33 \mu C \)[/tex]
2. Force [tex]\( F = 0.115 \, N \)[/tex]
3. Distance [tex]\( r = 1.44 \, m \)[/tex]
4. Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, N \, m^2 / C^2 \)[/tex]
The goal is to find the value of the second charge [tex]\( q_2 \)[/tex].
1. Convert the given charge [tex]\( q_1 \)[/tex] from microcoulombs to coulombs:
[tex]\[ q_1 = 6.33 \, \mu C \times 10^{-6} = 6.33 \times 10^{-6} \, C \][/tex]
2. Use Coulomb's Law:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
We need to solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot q_1} \][/tex]
3. Substitute the given values into the equation:
[tex]\[ q_2 = \frac{0.115 \, N \cdot (1.44 \, m)^2}{(8.99 \times 10^9 \, N \, m^2 / C^2) \cdot (6.33 \times 10^{-6} \, C)} \][/tex]
4. Calculate [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{0.115 \cdot 2.0736}{8.99 \times 10^9 \cdot 6.33 \times 10^{-6}} \][/tex]
[tex]\[ q_2 \approx \frac{0.238464}{56.967 \times 10^3} \][/tex]
[tex]\[ q_2 \approx 4.190438032779971 \times 10^{-6} \, C \][/tex]
5. Convert the result back to microcoulombs:
[tex]\[ q_2 \approx 4.190438032779971 \, \mu C \][/tex]
### Conclusion
The value of the second charge [tex]\( q_2 \)[/tex] is approximately [tex]\( 4.19 \, \mu C \)[/tex]. Since it is attracting the positive charge [tex]\( q_1 \)[/tex], [tex]\( q_2 \)[/tex] must be a negative charge. Therefore, [tex]\( q_2 \approx -4.19 \, \mu C \)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.