Get personalized and accurate responses to your questions with IDNLearn.com. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Sure, let's break down and solve each part of the question step-by-step.
### Part (a)
First, establish a coordinate system as described:
1. Draw two perpendicular axes: Draw the horizontal [tex]\(OX\)[/tex] axis and the vertical [tex]\(OY\)[/tex] axis with the origin [tex]\(O\)[/tex] at their intersection.
2. Set the scale: The scale is [tex]\(2\)[/tex] cm representing [tex]\(2\)[/tex] units. Therefore, each centimeter represents [tex]\(1\)[/tex] unit.
3. Mark intervals on the axes:
- On the [tex]\(OX\)[/tex] axis, mark intervals from [tex]\(-10\)[/tex] to [tex]\(10\)[/tex].
- On the [tex]\(OY\)[/tex] axis, mark intervals from [tex]\(-12\)[/tex] to [tex]\(12\)[/tex].
### Part (b)
For the following parts, you'll create different triangles on the graph paper based on the given transformations.
#### (i) Draw triangle [tex]\( PQR \)[/tex]:
1. Coordinates of [tex]\(P\)[/tex]: [tex]\((4,8)\)[/tex].
2. Find [tex]\(Q\)[/tex]:
[tex]\[ \overrightarrow{QP} = \begin{bmatrix}-2 \\ 2\end{bmatrix} \Rightarrow Q = P + \begin{bmatrix}-2 \\ 2\end{bmatrix} = \begin{bmatrix}4 \\ 8\end{bmatrix} + \begin{bmatrix}-2 \\ 2\end{bmatrix} = \begin{bmatrix}2 \\ 10\end{bmatrix} \][/tex]
3. Find [tex]\(R\)[/tex]:
[tex]\[ \overrightarrow{RP} = \begin{bmatrix}2 \\ 4\end{bmatrix} \Rightarrow R = P + \begin{bmatrix}2 \\ 4\end{bmatrix} = \begin{bmatrix}4 \\ 8\end{bmatrix} + \begin{bmatrix}2 \\ 4\end{bmatrix} = \begin{bmatrix}6 \\ 12\end{bmatrix} \][/tex]
So, the coordinates for triangle [tex]\(PQR\)[/tex] are:
- [tex]\(P(4,8)\)[/tex]
- [tex]\(Q(2,10)\)[/tex]
- [tex]\(R(6,12)\)[/tex]
#### (ii) Image [tex]\(\triangle P_1Q_1R_1\)[/tex] under reflection in [tex]\(y = -2\)[/tex]:
The reflection formula over the line [tex]\(y = c\)[/tex] is [tex]\( (x', y') = (x, 2c - y) \)[/tex].
Here, [tex]\(c = -2\)[/tex].
1. Reflect P:
[tex]\[ P_1 = (4, 2(-2) - 8) = (4, -12) \][/tex]
2. Reflect Q:
[tex]\[ Q_1 = (2, 2(-2) - 10) = (2, -14) \][/tex]
3. Reflect R:
[tex]\[ R_1 = (6, 2(-2) - 12) = (6, -16) \][/tex]
So, the coordinates for triangle [tex]\(\triangle P_1Q_1R_1\)[/tex] are:
- [tex]\(P_1(4, -12)\)[/tex]
- [tex]\(Q_1(2, -14)\)[/tex]
- [tex]\(R_1(6, -16)\)[/tex]
#### (iii) Image [tex]\(\triangle P_2Q_2R_2\)[/tex] under translation by vector [tex]\(\begin{bmatrix}-8 \\ 2\end{bmatrix}\)[/tex]:
1. Translate [tex]\(P\)[/tex]:
[tex]\[ P_2 = P + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}4 \\ 8\end{bmatrix} + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}-4 \\ 10\end{bmatrix} \][/tex]
2. Translate [tex]\(Q\)[/tex]:
[tex]\[ Q_2 = Q + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}2 \\ 10\end{bmatrix} + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}-6 \\ 12\end{bmatrix} \][/tex]
3. Translate [tex]\(R\)[/tex]:
[tex]\[ R_2 = R + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}6 \\ 12\end{bmatrix} + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}-2 \\ 14\end{bmatrix} \][/tex]
So, the coordinates for triangle [tex]\(\triangle P_2Q_2R_2\)[/tex] are:
- [tex]\(P_2(-4, 10)\)[/tex]
- [tex]\(Q_2(-6, 12)\)[/tex]
- [tex]\(R_2(-2, 14)\)[/tex]
#### (iv) Image [tex]\(\triangle P_3Q_3R_3\)[/tex] under rotation through [tex]\(180^\circ\)[/tex] about the origin:
The rotation formula for [tex]\(180^\circ\)[/tex] is [tex]\( (-x, -y) \)[/tex].
1. Rotate [tex]\(P\)[/tex]:
[tex]\[ P_3 = (-4, -8) \][/tex]
2. Rotate [tex]\(Q\)[/tex]:
[tex]\[ Q_3 = (-2, -10) \][/tex]
3. Rotate [tex]\(R\)[/tex]:
[tex]\[ R_3 = (-6, -12) \][/tex]
So, the coordinates for triangle [tex]\(\triangle P_3Q_3R_3\)[/tex] are:
- [tex]\(P_3(-4, -8)\)[/tex]
- [tex]\(Q_3(-2, -10)\)[/tex]
- [tex]\(R_3(-6, -12)\)[/tex]
### Part (c) Find [tex]\(\overline{Q_2 Q_3} \)[/tex]:
The distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \overline{Q_2 Q_3} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Given [tex]\(Q_2(-6, 12)\)[/tex] and [tex]\(Q_3(-2, -10)\)[/tex]:
[tex]\[ \overline{Q_2 Q_3} = \sqrt{((-2) - (-6))^2 + ((-10) - 12)^2} = \sqrt{(4)^2 + (-22)^2} = \sqrt{16 + 484} = \sqrt{500} = 22.360679774997898 \][/tex]
Thus, the length of [tex]\(\overline{Q_2 Q_3}\)[/tex] is approximately [tex]\(22.36\)[/tex].
### Part (a)
First, establish a coordinate system as described:
1. Draw two perpendicular axes: Draw the horizontal [tex]\(OX\)[/tex] axis and the vertical [tex]\(OY\)[/tex] axis with the origin [tex]\(O\)[/tex] at their intersection.
2. Set the scale: The scale is [tex]\(2\)[/tex] cm representing [tex]\(2\)[/tex] units. Therefore, each centimeter represents [tex]\(1\)[/tex] unit.
3. Mark intervals on the axes:
- On the [tex]\(OX\)[/tex] axis, mark intervals from [tex]\(-10\)[/tex] to [tex]\(10\)[/tex].
- On the [tex]\(OY\)[/tex] axis, mark intervals from [tex]\(-12\)[/tex] to [tex]\(12\)[/tex].
### Part (b)
For the following parts, you'll create different triangles on the graph paper based on the given transformations.
#### (i) Draw triangle [tex]\( PQR \)[/tex]:
1. Coordinates of [tex]\(P\)[/tex]: [tex]\((4,8)\)[/tex].
2. Find [tex]\(Q\)[/tex]:
[tex]\[ \overrightarrow{QP} = \begin{bmatrix}-2 \\ 2\end{bmatrix} \Rightarrow Q = P + \begin{bmatrix}-2 \\ 2\end{bmatrix} = \begin{bmatrix}4 \\ 8\end{bmatrix} + \begin{bmatrix}-2 \\ 2\end{bmatrix} = \begin{bmatrix}2 \\ 10\end{bmatrix} \][/tex]
3. Find [tex]\(R\)[/tex]:
[tex]\[ \overrightarrow{RP} = \begin{bmatrix}2 \\ 4\end{bmatrix} \Rightarrow R = P + \begin{bmatrix}2 \\ 4\end{bmatrix} = \begin{bmatrix}4 \\ 8\end{bmatrix} + \begin{bmatrix}2 \\ 4\end{bmatrix} = \begin{bmatrix}6 \\ 12\end{bmatrix} \][/tex]
So, the coordinates for triangle [tex]\(PQR\)[/tex] are:
- [tex]\(P(4,8)\)[/tex]
- [tex]\(Q(2,10)\)[/tex]
- [tex]\(R(6,12)\)[/tex]
#### (ii) Image [tex]\(\triangle P_1Q_1R_1\)[/tex] under reflection in [tex]\(y = -2\)[/tex]:
The reflection formula over the line [tex]\(y = c\)[/tex] is [tex]\( (x', y') = (x, 2c - y) \)[/tex].
Here, [tex]\(c = -2\)[/tex].
1. Reflect P:
[tex]\[ P_1 = (4, 2(-2) - 8) = (4, -12) \][/tex]
2. Reflect Q:
[tex]\[ Q_1 = (2, 2(-2) - 10) = (2, -14) \][/tex]
3. Reflect R:
[tex]\[ R_1 = (6, 2(-2) - 12) = (6, -16) \][/tex]
So, the coordinates for triangle [tex]\(\triangle P_1Q_1R_1\)[/tex] are:
- [tex]\(P_1(4, -12)\)[/tex]
- [tex]\(Q_1(2, -14)\)[/tex]
- [tex]\(R_1(6, -16)\)[/tex]
#### (iii) Image [tex]\(\triangle P_2Q_2R_2\)[/tex] under translation by vector [tex]\(\begin{bmatrix}-8 \\ 2\end{bmatrix}\)[/tex]:
1. Translate [tex]\(P\)[/tex]:
[tex]\[ P_2 = P + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}4 \\ 8\end{bmatrix} + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}-4 \\ 10\end{bmatrix} \][/tex]
2. Translate [tex]\(Q\)[/tex]:
[tex]\[ Q_2 = Q + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}2 \\ 10\end{bmatrix} + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}-6 \\ 12\end{bmatrix} \][/tex]
3. Translate [tex]\(R\)[/tex]:
[tex]\[ R_2 = R + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}6 \\ 12\end{bmatrix} + \begin{bmatrix}-8 \\ 2\end{bmatrix} = \begin{bmatrix}-2 \\ 14\end{bmatrix} \][/tex]
So, the coordinates for triangle [tex]\(\triangle P_2Q_2R_2\)[/tex] are:
- [tex]\(P_2(-4, 10)\)[/tex]
- [tex]\(Q_2(-6, 12)\)[/tex]
- [tex]\(R_2(-2, 14)\)[/tex]
#### (iv) Image [tex]\(\triangle P_3Q_3R_3\)[/tex] under rotation through [tex]\(180^\circ\)[/tex] about the origin:
The rotation formula for [tex]\(180^\circ\)[/tex] is [tex]\( (-x, -y) \)[/tex].
1. Rotate [tex]\(P\)[/tex]:
[tex]\[ P_3 = (-4, -8) \][/tex]
2. Rotate [tex]\(Q\)[/tex]:
[tex]\[ Q_3 = (-2, -10) \][/tex]
3. Rotate [tex]\(R\)[/tex]:
[tex]\[ R_3 = (-6, -12) \][/tex]
So, the coordinates for triangle [tex]\(\triangle P_3Q_3R_3\)[/tex] are:
- [tex]\(P_3(-4, -8)\)[/tex]
- [tex]\(Q_3(-2, -10)\)[/tex]
- [tex]\(R_3(-6, -12)\)[/tex]
### Part (c) Find [tex]\(\overline{Q_2 Q_3} \)[/tex]:
The distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \overline{Q_2 Q_3} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Given [tex]\(Q_2(-6, 12)\)[/tex] and [tex]\(Q_3(-2, -10)\)[/tex]:
[tex]\[ \overline{Q_2 Q_3} = \sqrt{((-2) - (-6))^2 + ((-10) - 12)^2} = \sqrt{(4)^2 + (-22)^2} = \sqrt{16 + 484} = \sqrt{500} = 22.360679774997898 \][/tex]
Thus, the length of [tex]\(\overline{Q_2 Q_3}\)[/tex] is approximately [tex]\(22.36\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.