IDNLearn.com connects you with a community of experts ready to answer your questions. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

Graph the system of constraints and find the values of [tex]$x$[/tex] and [tex]$y$[/tex] that maximize the objective function.

Constraints:
[tex]\[
\begin{cases}
x \geq 0 \\
y \geq 0 \\
y \leq \frac{1}{5}x + 2 \\
y + x \leq 5
\end{cases}
\][/tex]

Objective function:
[tex]\[C = 7x - 3y\][/tex]

Possible solutions:
A. [tex]$(2.5, 2.5)$[/tex]
B. [tex]$(0, 2)$[/tex]
C. [tex]$(0, 0)$[/tex]


Sagot :

To graph the system of constraints and find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that maximize the objective function [tex]\( C = 7x - 3y \)[/tex], we will follow these steps:

### Step 1: Graph the Constraints

1. Constraint 1: [tex]\( x \geq 0 \)[/tex]
- This means all feasible points are on or to the right of the y-axis.

2. Constraint 2: [tex]\( y \geq 0 \)[/tex]
- This means all feasible points are on or above the x-axis.

3. Constraint 3: [tex]\( y \leq \frac{1}{5} x + 2 \)[/tex]
- To graph this, start with the intercepts. When [tex]\( x = 0 \)[/tex], [tex]\( y = 2 \)[/tex], so we have the point (0, 2).
- When [tex]\( y = 0 \)[/tex], solve [tex]\( 0 = \frac{1}{5} x + 2 \)[/tex] to get [tex]\( x = -10 \)[/tex]. However, since [tex]\( x \geq 0 \)[/tex], we do not need this point so we get the intercept at (10, 0).

4. Constraint 4: [tex]\( y + x \leq 5 \)[/tex]
- To graph this, start with the intercepts again. When [tex]\( x = 0 \)[/tex], [tex]\( y = 5 \)[/tex], so we have the point (0, 5).
- When [tex]\( y = 0 \)[/tex], [tex]\( x = 5 \)[/tex], so we have the point (5, 0).

### Step 2: Identify the Feasible Region
- The feasible region is the area where all constraints overlap.
- It will be bounded by the lines [tex]\( y = \frac{1}{5}x + 2 \)[/tex] and [tex]\( y + x = 5 \)[/tex] along with the lines [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex].

### Step 3: Find the Corner Points
- We need to find intersection points of the boundary lines, as the maximum value will occur at one of the vertices of the feasible region.

1. Intersection of [tex]\( y = 0 \)[/tex] and [tex]\( x = 0 \)[/tex]
- The origin (0, 0).

2. Intersection of [tex]\( y = \frac{1}{5}x + 2 \)[/tex] and [tex]\( y + x = 5 \)[/tex]
- Solve:
[tex]\( \frac{1}{5}x + 2 + x = 5 \)[/tex]
[tex]\( \rightarrow \frac{1}{5}x + x = 3 \)[/tex]
[tex]\( \rightarrow 1.2x = 3 \)[/tex]
[tex]\( \rightarrow x = 2.5 \)[/tex]

Substitute [tex]\( x = 2.5 \)[/tex] into [tex]\( y = \frac{1}{5}x + 2 \)[/tex]:
[tex]\( y = \frac{1}{5}(2.5) + 2 = 0.5 + 2 = 2.5 \)[/tex]
- So, the point is (2.5, 2.5).

3. Intersection of [tex]\( y = \frac{1}{5}x + 2 \)[/tex] and [tex]\( y = 0 \)[/tex]
- Already found as (0, 2) from constraints.

4. Intersection of [tex]\( y + x = 5 \)[/tex] with x and y bounds
- Points are (5, 0) and (0, 5).

### Step 4: Evaluate Objective Function at Each Vertex
1. At (0, 0):
[tex]\( C = 7(0) - 3(0) = 0 \)[/tex]

2. At (0, 2):
[tex]\( C = 7(0) - 3(2) = -6 \)[/tex]

3. At (2.5, 2.5):
[tex]\( C = 7(2.5) - 3(2.5) = 17.5 - 7.5 = 10 \)[/tex]

4. At (5, 0):
[tex]\( C = 7(5) - 3(0) = 35 \)[/tex]

5. At (0, 5):
Points outside boundary, so not evaluated.

### Conclusion
The maximum value of the objective function [tex]\( C \)[/tex] occurs at [tex]\( (2.5, 2.5) \)[/tex] and is given by:

[tex]\[ C = 10 \][/tex]

Thus, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that maximize the objective function [tex]\( C = 7x - 3y \)[/tex] are [tex]\( \boxed{(2.5, 2.5)} \)[/tex].