Get comprehensive solutions to your problems with IDNLearn.com. Get step-by-step guidance for all your technical questions from our dedicated community members.
Sagot :
To determine the gravitational force exerted between two masses, we utilize Newton's law of universal gravitation. This law states that the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, approximately [tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses in kilograms,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses in meters.
In this problem, we have:
- [tex]\( m_1 = 30 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 30 \, \text{kg} \)[/tex],
- [tex]\( r = 2.0 \, \text{m} \)[/tex].
First, we calculate the gravitational force [tex]\( F \)[/tex] in Newtons (N):
[tex]\[ F = \left( 6.67430 \times 10^{-11} \right) \frac{30 \cdot 30}{2.0^2} \][/tex]
[tex]\[ F = \left( 6.67430 \times 10^{-11} \right) \frac{900}{4} \][/tex]
[tex]\[ F = \left( 6.67430 \times 10^{-11} \right) \cdot 225 \][/tex]
[tex]\[ F = 1.5017174999999998 \times 10^{-8} \, \text{N} \][/tex]
Next, since we want the force in nanoNewtons (nN), we must convert Newtons to nanoNewtons. Remember that [tex]\( 1 \, \text{N} = 10^9 \, \text{nN} \)[/tex]:
[tex]\[ F \, (\text{nN}) = 1.5017174999999998 \times 10^{-8} \, \text{N} \times 10^9 \, \text{nN} / \text{N} \][/tex]
[tex]\[ F \, (\text{nN}) = 15.017174999999998 \, \text{nN} \][/tex]
Thus, the gravitational force between the two masses is:
[tex]\[ F = 15.017174999999998 \, \text{nN} \][/tex]
So, in this scenario, the force is [tex]\( 15.017174999999998 \, \text{nanoNewtons} \)[/tex].
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, approximately [tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses in kilograms,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses in meters.
In this problem, we have:
- [tex]\( m_1 = 30 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 30 \, \text{kg} \)[/tex],
- [tex]\( r = 2.0 \, \text{m} \)[/tex].
First, we calculate the gravitational force [tex]\( F \)[/tex] in Newtons (N):
[tex]\[ F = \left( 6.67430 \times 10^{-11} \right) \frac{30 \cdot 30}{2.0^2} \][/tex]
[tex]\[ F = \left( 6.67430 \times 10^{-11} \right) \frac{900}{4} \][/tex]
[tex]\[ F = \left( 6.67430 \times 10^{-11} \right) \cdot 225 \][/tex]
[tex]\[ F = 1.5017174999999998 \times 10^{-8} \, \text{N} \][/tex]
Next, since we want the force in nanoNewtons (nN), we must convert Newtons to nanoNewtons. Remember that [tex]\( 1 \, \text{N} = 10^9 \, \text{nN} \)[/tex]:
[tex]\[ F \, (\text{nN}) = 1.5017174999999998 \times 10^{-8} \, \text{N} \times 10^9 \, \text{nN} / \text{N} \][/tex]
[tex]\[ F \, (\text{nN}) = 15.017174999999998 \, \text{nN} \][/tex]
Thus, the gravitational force between the two masses is:
[tex]\[ F = 15.017174999999998 \, \text{nN} \][/tex]
So, in this scenario, the force is [tex]\( 15.017174999999998 \, \text{nanoNewtons} \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.