IDNLearn.com provides a collaborative environment for finding accurate answers. Whether it's a simple query or a complex problem, our community has the answers you need.
Sagot :
Certainly! Let's go through the problem step-by-step to rewrite the improper rational expression as the sum of a polynomial and a proper rational expression, and then find the partial fraction decomposition of the proper rational expression.
Given:
[tex]\[ \frac{x^4 - 6x^2 + x - 16}{x^2 + 8x + 16} \][/tex]
### Step 1: Perform Polynomial Division
First, we'll perform polynomial division to divide [tex]\(x^4 - 6x^2 + x - 16\)[/tex] by [tex]\(x^2 + 8x + 16\)[/tex]. This process can be summarized as follows:
1. Divide the leading term of the numerator [tex]\(x^4\)[/tex] by the leading term of the denominator [tex]\(x^2\)[/tex] to get [tex]\(x^2\)[/tex].
2. Multiply [tex]\(x^2\)[/tex] by the entire denominator [tex]\((x^2 + 8x + 16)\)[/tex] to get [tex]\(x^4 + 8x^3 + 16x^2\)[/tex].
3. Subtract this result from the original numerator to get the new polynomial:
[tex]\[ (x^4 - 6x^2 + x - 16) - (x^4 + 8x^3 + 16x^2) = -8x^3 - 22x^2 + x - 16. \][/tex]
4. Repeat this process with [tex]\(-8x^3\)[/tex] divided by [tex]\(x^2\)[/tex], giving [tex]\(-8x\)[/tex]. We multiply [tex]\(-8x\)[/tex] by the entire denominator to get [tex]\(-8x^3 - 64x^2 - 128x\)[/tex].
5. Subtract this to get the next polynomial and continue until we obtain a remainder that has a degree smaller than the degree of the denominator.
Here's the summarized result of the polynomial division:
The quotient is:
[tex]\[ x^2 - 8x + 42 \][/tex]
The remainder is:
[tex]\[ -207x - 688 \][/tex]
Thus, we can rewrite the expression as:
[tex]\[ \frac{x^4 - 6x^2 + x - 16}{x^2 + 8x + 16} = x^2 - 8x + 42 + \frac{-207x - 688}{x^2 + 8x + 16} \][/tex]
### Step 2: Partial Fraction Decomposition of the Proper Rational Expression
Now we decompose [tex]\(\frac{-207x - 688}{x^2 + 8x + 16}\)[/tex] into partial fractions. Note that [tex]\(x^2 + 8x + 16\)[/tex] can be factored as [tex]\((x + 4)^2\)[/tex].
Thus the decomposition looks like:
[tex]\[ \frac{-207x - 688}{(x + 4)^2} = \frac{A}{x + 4} + \frac{B}{(x + 4)^2} \][/tex]
Equate the numerators:
[tex]\[ -207x - 688 = A(x + 4) + B \][/tex]
Solving for [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ -207x - 688 = Ax + 4A + B \][/tex]
We equate the coefficients of like terms:
1. For [tex]\(x\)[/tex]:
[tex]\[ -207 = A \][/tex]
2. For the constant term:
[tex]\[ -688 = 4A + B \][/tex]
Substituting [tex]\(A = -207\)[/tex] into [tex]\(4A + B\)[/tex]:
[tex]\[ -688 = 4(-207) + B \implies -688 = -828 + B \implies B = 140 \][/tex]
So, the partial fraction decomposition is:
[tex]\[ \frac{-207x - 688}{(x + 4)^2} = \frac{-207}{x + 4} + \frac{140}{(x + 4)^2} \][/tex]
### Step 3: Express the Improper Rational Expression
Combining everything, we can rewrite the original improper rational expression as:
[tex]\[ \frac{x^4 - 6x^2 + x - 16}{x^2 + 8x + 16} = x^2 - 8x + 42 + \left( \frac{-207}{x + 4} + \frac{140}{(x + 4)^2} \right) \][/tex]
So, the final expression is:
[tex]\[ \frac{x^4 - 6x^2 + x - 16}{x^2 + 8x + 16} = x^2 - 8x + 42 + \frac{-207}{x + 4} + \frac{140}{(x + 4)^2} \][/tex]
This completes the step-by-step solution!
Given:
[tex]\[ \frac{x^4 - 6x^2 + x - 16}{x^2 + 8x + 16} \][/tex]
### Step 1: Perform Polynomial Division
First, we'll perform polynomial division to divide [tex]\(x^4 - 6x^2 + x - 16\)[/tex] by [tex]\(x^2 + 8x + 16\)[/tex]. This process can be summarized as follows:
1. Divide the leading term of the numerator [tex]\(x^4\)[/tex] by the leading term of the denominator [tex]\(x^2\)[/tex] to get [tex]\(x^2\)[/tex].
2. Multiply [tex]\(x^2\)[/tex] by the entire denominator [tex]\((x^2 + 8x + 16)\)[/tex] to get [tex]\(x^4 + 8x^3 + 16x^2\)[/tex].
3. Subtract this result from the original numerator to get the new polynomial:
[tex]\[ (x^4 - 6x^2 + x - 16) - (x^4 + 8x^3 + 16x^2) = -8x^3 - 22x^2 + x - 16. \][/tex]
4. Repeat this process with [tex]\(-8x^3\)[/tex] divided by [tex]\(x^2\)[/tex], giving [tex]\(-8x\)[/tex]. We multiply [tex]\(-8x\)[/tex] by the entire denominator to get [tex]\(-8x^3 - 64x^2 - 128x\)[/tex].
5. Subtract this to get the next polynomial and continue until we obtain a remainder that has a degree smaller than the degree of the denominator.
Here's the summarized result of the polynomial division:
The quotient is:
[tex]\[ x^2 - 8x + 42 \][/tex]
The remainder is:
[tex]\[ -207x - 688 \][/tex]
Thus, we can rewrite the expression as:
[tex]\[ \frac{x^4 - 6x^2 + x - 16}{x^2 + 8x + 16} = x^2 - 8x + 42 + \frac{-207x - 688}{x^2 + 8x + 16} \][/tex]
### Step 2: Partial Fraction Decomposition of the Proper Rational Expression
Now we decompose [tex]\(\frac{-207x - 688}{x^2 + 8x + 16}\)[/tex] into partial fractions. Note that [tex]\(x^2 + 8x + 16\)[/tex] can be factored as [tex]\((x + 4)^2\)[/tex].
Thus the decomposition looks like:
[tex]\[ \frac{-207x - 688}{(x + 4)^2} = \frac{A}{x + 4} + \frac{B}{(x + 4)^2} \][/tex]
Equate the numerators:
[tex]\[ -207x - 688 = A(x + 4) + B \][/tex]
Solving for [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ -207x - 688 = Ax + 4A + B \][/tex]
We equate the coefficients of like terms:
1. For [tex]\(x\)[/tex]:
[tex]\[ -207 = A \][/tex]
2. For the constant term:
[tex]\[ -688 = 4A + B \][/tex]
Substituting [tex]\(A = -207\)[/tex] into [tex]\(4A + B\)[/tex]:
[tex]\[ -688 = 4(-207) + B \implies -688 = -828 + B \implies B = 140 \][/tex]
So, the partial fraction decomposition is:
[tex]\[ \frac{-207x - 688}{(x + 4)^2} = \frac{-207}{x + 4} + \frac{140}{(x + 4)^2} \][/tex]
### Step 3: Express the Improper Rational Expression
Combining everything, we can rewrite the original improper rational expression as:
[tex]\[ \frac{x^4 - 6x^2 + x - 16}{x^2 + 8x + 16} = x^2 - 8x + 42 + \left( \frac{-207}{x + 4} + \frac{140}{(x + 4)^2} \right) \][/tex]
So, the final expression is:
[tex]\[ \frac{x^4 - 6x^2 + x - 16}{x^2 + 8x + 16} = x^2 - 8x + 42 + \frac{-207}{x + 4} + \frac{140}{(x + 4)^2} \][/tex]
This completes the step-by-step solution!
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.