Join IDNLearn.com and start exploring the answers to your most pressing questions. Whether it's a simple query or a complex problem, our community has the answers you need.
Sagot :
Let's analyze the given quotient step-by-step.
Given:
[tex]\[ \frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7} \div \frac{3 x}{4 x^2 - 1} \][/tex]
### Step 1: Simplify Each Fraction
First, simplify each fraction separately.
1. Simplify [tex]\(\frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7}\)[/tex]:
- Numerator: [tex]\(3 x^2 - 27 x\)[/tex]
- Denominator: [tex]\(2 x^2 + 13 x - 7\)[/tex]
Factorize the numerator and denominator if possible:
- Numerator: [tex]\(3x(x - 9)\)[/tex]
- Denominator: This is a bit too complex for manual factorization here, so we will simplify it directly using algebraic techniques revealing simplified form stays as it is.
2. Simplify [tex]\(\frac{3 x}{4 x^2 - 1}\)[/tex]:
- Numerator: [tex]\(3 x\)[/tex]
- Denominator: [tex]\(4 x^2 - 1\)[/tex]
Factorize the denominator:
- Denominator: [tex]\((2x - 1)(2x + 1)\)[/tex]
### Step 2: Divide the Simplified Fractions
Dividing the two fractions is equivalent to multiplying the first fraction by the reciprocal of the second.
[tex]\[ \frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7} \div \frac{3 x}{4 x^2 - 1} = \frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7} \times \frac{4 x^2 - 1}{3 x} \][/tex]
Combine into a single fraction:
[tex]\[ \frac{(3 x^2 - 27 x) \cdot (4 x^2 - 1)}{(2 x^2 + 13 x - 7) \cdot 3 x} \][/tex]
### Step 3: Simplify the Resulting Expression
Simplify the fraction:
[tex]\[ \frac{(3 x^2 - 27 x) \cdot (4 x^2 - 1)}{(2 x^2 + 13 x - 7) \cdot 3 x} \][/tex]
Factorize [tex]\(3 x^2 - 27 x\)[/tex] as [tex]\(3x(x - 9)\)[/tex].
Rewrite the entire fraction:
[tex]\[ \frac{3x(x - 9) \cdot (4 x^2 - 1)}{(2 x^2 + 13 x - 7) \cdot 3 x} \][/tex]
Cancel out terms common to numerator and denominator:
[tex]\[ \frac{(x - 9) \cdot (4 x^2 - 1)}{2 x^2 + 13 x - 7} \][/tex]
Notice the denominator [tex]\(4 x^2 - 1\)[/tex] can be written as [tex]\((2x - 1)(2x + 1)\)[/tex]:
Simplify further:
[tex]\[ = \frac{(x - 9) \cdot (2x - 1)(2x + 1)}{2 x^2 + 13 x - 7} \][/tex]
### Step 4: Simplify to the Most Reduced Form
Combine and further reduce any additional common factors which simplification gives:
### Result
As we solved the simplification, we found the final form of numerator and denominator are :
[tex]\(\boxed{2x^2 - 17x - 9}\)[/tex]
and
[tex]\(\boxed{x + 7}\)[/tex]
### Step 5: Identify Non-existent Points
Finally, determine when the expression does not exist, which occurs when the denominator is zero.
[tex]\[ x + 7 = 0 \implies x = -7 \][/tex]
Thus, the expression does not exist for [tex]\(x = \boxed{-7}\)[/tex].
So, the simplest form of the quotient is:
- Numerator: [tex]\(2x^2 - 17x - 9\)[/tex]
- Denominator: [tex]\(x + 7\)[/tex]
- The expression does not exist when [tex]\(x = -7\)[/tex].
Given:
[tex]\[ \frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7} \div \frac{3 x}{4 x^2 - 1} \][/tex]
### Step 1: Simplify Each Fraction
First, simplify each fraction separately.
1. Simplify [tex]\(\frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7}\)[/tex]:
- Numerator: [tex]\(3 x^2 - 27 x\)[/tex]
- Denominator: [tex]\(2 x^2 + 13 x - 7\)[/tex]
Factorize the numerator and denominator if possible:
- Numerator: [tex]\(3x(x - 9)\)[/tex]
- Denominator: This is a bit too complex for manual factorization here, so we will simplify it directly using algebraic techniques revealing simplified form stays as it is.
2. Simplify [tex]\(\frac{3 x}{4 x^2 - 1}\)[/tex]:
- Numerator: [tex]\(3 x\)[/tex]
- Denominator: [tex]\(4 x^2 - 1\)[/tex]
Factorize the denominator:
- Denominator: [tex]\((2x - 1)(2x + 1)\)[/tex]
### Step 2: Divide the Simplified Fractions
Dividing the two fractions is equivalent to multiplying the first fraction by the reciprocal of the second.
[tex]\[ \frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7} \div \frac{3 x}{4 x^2 - 1} = \frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7} \times \frac{4 x^2 - 1}{3 x} \][/tex]
Combine into a single fraction:
[tex]\[ \frac{(3 x^2 - 27 x) \cdot (4 x^2 - 1)}{(2 x^2 + 13 x - 7) \cdot 3 x} \][/tex]
### Step 3: Simplify the Resulting Expression
Simplify the fraction:
[tex]\[ \frac{(3 x^2 - 27 x) \cdot (4 x^2 - 1)}{(2 x^2 + 13 x - 7) \cdot 3 x} \][/tex]
Factorize [tex]\(3 x^2 - 27 x\)[/tex] as [tex]\(3x(x - 9)\)[/tex].
Rewrite the entire fraction:
[tex]\[ \frac{3x(x - 9) \cdot (4 x^2 - 1)}{(2 x^2 + 13 x - 7) \cdot 3 x} \][/tex]
Cancel out terms common to numerator and denominator:
[tex]\[ \frac{(x - 9) \cdot (4 x^2 - 1)}{2 x^2 + 13 x - 7} \][/tex]
Notice the denominator [tex]\(4 x^2 - 1\)[/tex] can be written as [tex]\((2x - 1)(2x + 1)\)[/tex]:
Simplify further:
[tex]\[ = \frac{(x - 9) \cdot (2x - 1)(2x + 1)}{2 x^2 + 13 x - 7} \][/tex]
### Step 4: Simplify to the Most Reduced Form
Combine and further reduce any additional common factors which simplification gives:
### Result
As we solved the simplification, we found the final form of numerator and denominator are :
[tex]\(\boxed{2x^2 - 17x - 9}\)[/tex]
and
[tex]\(\boxed{x + 7}\)[/tex]
### Step 5: Identify Non-existent Points
Finally, determine when the expression does not exist, which occurs when the denominator is zero.
[tex]\[ x + 7 = 0 \implies x = -7 \][/tex]
Thus, the expression does not exist for [tex]\(x = \boxed{-7}\)[/tex].
So, the simplest form of the quotient is:
- Numerator: [tex]\(2x^2 - 17x - 9\)[/tex]
- Denominator: [tex]\(x + 7\)[/tex]
- The expression does not exist when [tex]\(x = -7\)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.