Connect with a knowledgeable community and get your questions answered on IDNLearn.com. Whether your question is simple or complex, our community is here to provide detailed and trustworthy answers quickly and effectively.

For the function [tex]$g(x) = x^5 - 4x^3$[/tex], solve the inequality:

[tex]g(x) \ \textgreater \ 0[/tex]


Sagot :

To solve the inequality [tex]\( g(x) = x^5 - 4x^3 > 0 \)[/tex], let us follow these steps:

1. Factor the function:
First, we factor [tex]\( g(x) \)[/tex]. Notice that you can factor out [tex]\( x^3 \)[/tex] from the expression:
[tex]\[ g(x) = x^5 - 4x^3 = x^3(x^2 - 4). \][/tex]
Further, we can factor [tex]\( x^2 - 4 \)[/tex] as the difference of squares:
[tex]\[ x^2 - 4 = (x - 2)(x + 2). \][/tex]
Thus, the factored form of [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = x^3 (x - 2)(x + 2). \][/tex]

2. Find the critical points:
Critical points are the values of [tex]\( x \)[/tex] where [tex]\( g(x) = 0 \)[/tex]. Setting the factored form equal to zero, we get:
[tex]\[ x^3(x - 2)(x + 2) = 0. \][/tex]
This gives us critical points at:
[tex]\[ x = 0, \quad x = 2, \quad x = -2. \][/tex]

3. Determine intervals:
The critical points divide the real number line into several intervals. We need to test the sign of [tex]\( g(x) \)[/tex] in each interval. The intervals are:
[tex]\[ (-\infty, -2), \quad (-2, 0), \quad (0, 2), \quad (2, \infty). \][/tex]

4. Test the sign of [tex]\( g(x) \)[/tex] in each interval:
We can pick a test point [tex]\( x \)[/tex] from each interval and evaluate the sign of [tex]\( g(x) \)[/tex].

- For [tex]\( x \in (-\infty, -2) \)[/tex]:
Choose [tex]\( x = -3 \)[/tex]:
[tex]\[ g(-3) = (-3)^3 (-3 - 2)(-3 + 2) = -27 \cdot -5 \cdot -1 = -135 < 0. \][/tex]
So, [tex]\( g(x) < 0 \)[/tex] in [tex]\( (-\infty, -2) \)[/tex].

- For [tex]\( x \in (-2, 0) \)[/tex]:
Choose [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = (-1)^3 (-1 - 2)(-1 + 2) = -1 \cdot -3 \cdot 1 = 3 > 0. \][/tex]
So, [tex]\( g(x) > 0 \)[/tex] in [tex]\( (-2, 0) \)[/tex].

- For [tex]\( x \in (0, 2) \)[/tex]:
Choose [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = 1^3 (1 - 2)(1 + 2) = 1 \cdot -1 \cdot 3 = -3 < 0. \][/tex]
So, [tex]\( g(x) < 0 \)[/tex] in [tex]\( (0, 2) \)[/tex].

- For [tex]\( x \in (2, \infty) \)[/tex]:
Choose [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = 3^3 (3 - 2)(3 + 2) = 27 \cdot 1 \cdot 5 = 135 > 0. \][/tex]
So, [tex]\( g(x) > 0 \)[/tex] in [tex]\( (2, \infty) \)[/tex].

5. Combine the intervals:
We are looking for where [tex]\( g(x) > 0 \)[/tex]. From the intervals tested, [tex]\( g(x) \)[/tex] is positive in [tex]\( (-2, 0) \)[/tex] and [tex]\( (2, \infty) \)[/tex].

Therefore, the solution to the inequality [tex]\( g(x) > 0 \)[/tex] is:
[tex]\[ (-2, 0) \cup (2, \infty). \][/tex]