Get personalized answers to your specific questions with IDNLearn.com. Join our Q&A platform to receive prompt and accurate responses from knowledgeable professionals in various fields.
Sagot :
Let the roots of the quadratic equation [tex]\( p x^2 + q = 0 \)[/tex] be denoted by [tex]\( r_1 \)[/tex] and [tex]\( r_2 \)[/tex]. Given that these roots differ by 1, we can express them as [tex]\( r_1 = r \)[/tex] and [tex]\( r_2 = r + 1 \)[/tex].
### Step 1: Sum of Roots
The sum of roots of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by [tex]\( -\frac{b}{a} \)[/tex]. In our equation [tex]\( p x^2 + q = 0 \)[/tex], the coefficient of [tex]\( x \)[/tex] (i.e., [tex]\( b \)[/tex]) is 0. Therefore, the sum of the roots is:
[tex]\[ r_1 + r_2 = -\frac{0}{p} = 0 \][/tex]
As [tex]\( r_1 \)[/tex] and [tex]\( r_2 \)[/tex] are [tex]\( r \)[/tex] and [tex]\( r + 1 \)[/tex] respectively, we have:
[tex]\[ r + (r + 1) = 0 \][/tex]
[tex]\[ 2r + 1 = 0 \][/tex]
Solving for [tex]\( r \)[/tex]:
[tex]\[ 2r = -1 \][/tex]
[tex]\[ r = -\frac{1}{2} \][/tex]
### Step 2: Product of Roots
The product of the roots of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by [tex]\( \frac{c}{a} \)[/tex]. In our equation [tex]\( p x^2 + q = 0 \)[/tex], the constant term (i.e., [tex]\( c \)[/tex]) is [tex]\( q \)[/tex] and the coefficient of [tex]\( x^2 \)[/tex] (i.e., [tex]\( a \)[/tex]) is [tex]\( p \)[/tex]. Therefore, the product of the roots is:
[tex]\[ r_1 \cdot r_2 = \frac{q}{p} \][/tex]
Substituting [tex]\( r_1 = -\frac{1}{2} \)[/tex] and [tex]\( r_2 = -\frac{1}{2} + 1 \)[/tex]:
[tex]\[ r_1 \cdot r_2 = -\frac{1}{2} \cdot \left( -\frac{1}{2} + 1 \right) \][/tex]
[tex]\[ r_1 \cdot r_2 = -\frac{1}{2} \cdot \frac{1}{2} \][/tex]
[tex]\[ r_1 \cdot r_2 = -\frac{1}{4} \][/tex]
### Step 3: Relationship Between [tex]\( p \)[/tex] and [tex]\( q \)[/tex]
We know that the product of the roots is:
[tex]\[ \frac{q}{p} = -\frac{1}{4} \][/tex]
Multiplying both sides by [tex]\( p \)[/tex]:
[tex]\[ q = -\frac{1}{4} p \][/tex]
Thus, the relationship between [tex]\( p \)[/tex] and [tex]\( q \)[/tex] is:
[tex]\[ q = -\frac{1}{4} p \][/tex]
### Step 1: Sum of Roots
The sum of roots of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by [tex]\( -\frac{b}{a} \)[/tex]. In our equation [tex]\( p x^2 + q = 0 \)[/tex], the coefficient of [tex]\( x \)[/tex] (i.e., [tex]\( b \)[/tex]) is 0. Therefore, the sum of the roots is:
[tex]\[ r_1 + r_2 = -\frac{0}{p} = 0 \][/tex]
As [tex]\( r_1 \)[/tex] and [tex]\( r_2 \)[/tex] are [tex]\( r \)[/tex] and [tex]\( r + 1 \)[/tex] respectively, we have:
[tex]\[ r + (r + 1) = 0 \][/tex]
[tex]\[ 2r + 1 = 0 \][/tex]
Solving for [tex]\( r \)[/tex]:
[tex]\[ 2r = -1 \][/tex]
[tex]\[ r = -\frac{1}{2} \][/tex]
### Step 2: Product of Roots
The product of the roots of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by [tex]\( \frac{c}{a} \)[/tex]. In our equation [tex]\( p x^2 + q = 0 \)[/tex], the constant term (i.e., [tex]\( c \)[/tex]) is [tex]\( q \)[/tex] and the coefficient of [tex]\( x^2 \)[/tex] (i.e., [tex]\( a \)[/tex]) is [tex]\( p \)[/tex]. Therefore, the product of the roots is:
[tex]\[ r_1 \cdot r_2 = \frac{q}{p} \][/tex]
Substituting [tex]\( r_1 = -\frac{1}{2} \)[/tex] and [tex]\( r_2 = -\frac{1}{2} + 1 \)[/tex]:
[tex]\[ r_1 \cdot r_2 = -\frac{1}{2} \cdot \left( -\frac{1}{2} + 1 \right) \][/tex]
[tex]\[ r_1 \cdot r_2 = -\frac{1}{2} \cdot \frac{1}{2} \][/tex]
[tex]\[ r_1 \cdot r_2 = -\frac{1}{4} \][/tex]
### Step 3: Relationship Between [tex]\( p \)[/tex] and [tex]\( q \)[/tex]
We know that the product of the roots is:
[tex]\[ \frac{q}{p} = -\frac{1}{4} \][/tex]
Multiplying both sides by [tex]\( p \)[/tex]:
[tex]\[ q = -\frac{1}{4} p \][/tex]
Thus, the relationship between [tex]\( p \)[/tex] and [tex]\( q \)[/tex] is:
[tex]\[ q = -\frac{1}{4} p \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.