Discover a world of knowledge and community-driven answers at IDNLearn.com today. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.
Sagot :
To determine the total kinetic energy of the system after the collision, we need to follow these steps:
1. Calculate the kinetic energy of object [tex]\( A \)[/tex] before the collision.
The kinetic energy ([tex]\( KE \)[/tex]) of an object is given by the formula:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
For object [tex]\( A \)[/tex]:
[tex]\[ m_A = 25 \text{ kg}, \quad v_A = 5.98 \text{ m/s} \][/tex]
[tex]\[ KE_A = \frac{1}{2} \times 25 \times (5.98)^2 \][/tex]
The result is approximately 447.005 joules.
2. Calculate the kinetic energy of object [tex]\( B \)[/tex] before the collision.
Since object [tex]\( B \)[/tex] is stationary, it has no kinetic energy.
[tex]\[ m_B = 25 \text{ kg}, \quad v_B = 0 \text{ m/s} \][/tex]
[tex]\[ KE_B = \frac{1}{2} \times 25 \text{ kg} \times (0)^2 = 0 \text{ joules} \][/tex]
3. Determine the total kinetic energy before the collision.
[tex]\[ KE_{\text{total before}} = KE_A + KE_B = 447.005 \text{ joules} + 0 \text{ joules} = 447.005 \text{ joules} \][/tex]
4. Use conservation of kinetic energy for a perfectly elastic collision.
In a perfectly elastic collision, the total kinetic energy before the collision is equal to the total kinetic energy after the collision.
[tex]\[ KE_{\text{total after}} = KE_{\text{total before}} = 447.005 \text{ joules} \][/tex]
Given the above steps, the total kinetic energy of the system after the collision is approximately:
[tex]\[ 447.005 \text{ joules} \][/tex]
Comparing this result with the provided options, the closest match is:
[tex]\[ B. 4.5 \times 10^2 \text{ joules} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
1. Calculate the kinetic energy of object [tex]\( A \)[/tex] before the collision.
The kinetic energy ([tex]\( KE \)[/tex]) of an object is given by the formula:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
For object [tex]\( A \)[/tex]:
[tex]\[ m_A = 25 \text{ kg}, \quad v_A = 5.98 \text{ m/s} \][/tex]
[tex]\[ KE_A = \frac{1}{2} \times 25 \times (5.98)^2 \][/tex]
The result is approximately 447.005 joules.
2. Calculate the kinetic energy of object [tex]\( B \)[/tex] before the collision.
Since object [tex]\( B \)[/tex] is stationary, it has no kinetic energy.
[tex]\[ m_B = 25 \text{ kg}, \quad v_B = 0 \text{ m/s} \][/tex]
[tex]\[ KE_B = \frac{1}{2} \times 25 \text{ kg} \times (0)^2 = 0 \text{ joules} \][/tex]
3. Determine the total kinetic energy before the collision.
[tex]\[ KE_{\text{total before}} = KE_A + KE_B = 447.005 \text{ joules} + 0 \text{ joules} = 447.005 \text{ joules} \][/tex]
4. Use conservation of kinetic energy for a perfectly elastic collision.
In a perfectly elastic collision, the total kinetic energy before the collision is equal to the total kinetic energy after the collision.
[tex]\[ KE_{\text{total after}} = KE_{\text{total before}} = 447.005 \text{ joules} \][/tex]
Given the above steps, the total kinetic energy of the system after the collision is approximately:
[tex]\[ 447.005 \text{ joules} \][/tex]
Comparing this result with the provided options, the closest match is:
[tex]\[ B. 4.5 \times 10^2 \text{ joules} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.