Get the answers you've been looking for with the help of IDNLearn.com's expert community. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
To perform the partial fraction decomposition of the rational expression
[tex]\[ \frac{2x^2 + 3x - 6}{x^3 - 6x - 9} \][/tex]
we start by factoring the denominator.
First, let's factor [tex]\(x^3 - 6x - 9\)[/tex]. We look for a rational root using the Rational Root Theorem. The possible rational roots for [tex]\(x^3 - 6x - 9 = 0\)[/tex] are [tex]\(\pm 1, \pm 3, \pm 9\)[/tex].
Testing these values:
- For [tex]\(x = 1\)[/tex]:
[tex]\[ 1^3 - 6(1) - 9 = 1 - 6 - 9 = -14 \neq 0 \][/tex]
- For [tex]\(x = -1\)[/tex]:
[tex]\[ (-1)^3 - 6(-1) - 9 = -1 + 6 - 9 = -4 \neq 0 \][/tex]
- For [tex]\(x = 3\)[/tex]:
[tex]\[ 3^3 - 6(3) - 9 = 27 - 18 - 9 = 0 \][/tex]
So [tex]\(x = 3\)[/tex] is a root.
Therefore, we can divide [tex]\(x^3 - 6x - 9\)[/tex] by [tex]\(x - 3\)[/tex]:
Using synthetic division for [tex]\((x^3 - 6x - 9) \div (x - 3)\)[/tex]:
[tex]\[ \begin{array}{r|rrrr} 3 & 1 & 0 & -6 & -9 \\ & & 3 & 9 & 9 \\ \hline & 1 & 3 & 3 & 0 \\ \end{array} \][/tex]
This shows:
[tex]\[ x^3 - 6x - 9 = (x - 3)(x^2 + 3x + 3) \][/tex]
So now the expression is:
[tex]\[ \frac{2x^2 + 3x - 6}{(x - 3)(x^2 + 3x + 3)} \][/tex]
To decompose it into partial fractions, we assume:
[tex]\[ \frac{2x^2 + 3x - 6}{(x - 3)(x^2 + 3x + 3)} = \frac{A}{x - 3} + \frac{Bx + C}{x^2 + 3x + 3} \][/tex]
Multiplying both sides by [tex]\((x - 3)(x^2 + 3x + 3)\)[/tex] to clear the denominators, we get:
[tex]\[ 2x^2 + 3x - 6 = A(x^2 + 3x + 3) + (Bx + C)(x - 3) \][/tex]
Expanding and combining like terms:
[tex]\[ 2x^2 + 3x - 6 = A(x^2 + 3x + 3) + Bx^2 - 3Bx + Cx - 3C \][/tex]
[tex]\[= Ax^2 + 3Ax + 3A + Bx^2 - 3Bx + Cx - 3C\][/tex]
[tex]\[= (A + B)x^2 + (3A - 3B + C)x + (3A - 3C)\][/tex]
Equating coefficients of corresponding powers of [tex]\(x\)[/tex]:
1. For [tex]\(x^2\)[/tex]:
[tex]\[ A + B = 2 \][/tex]
2. For [tex]\(x^1\)[/tex]:
[tex]\[ 3A - 3B + C = 3 \][/tex]
3. For the constant term:
[tex]\[ 3A - 3C = -6 \][/tex]
Solving this system of equations:
From [tex]\(3A - 3C = -6 \rightarrow A - C = -2\)[/tex]
From [tex]\(A + B = 2\)[/tex]
[tex]\[ B = 2 - A \][/tex]
Substituting [tex]\(B\)[/tex] in [tex]\(3A - 3(2 - A) + C = 3 \rightarrow 3A - 6 + 3A + C = 3 \rightarrow 6A + C - 6 = 3 \rightarrow 6A + C = 9 \rightarrow C = 9 - 6A\)[/tex]
So now we have:
[tex]\[ A - C = -2 \rightarrow A - (9 - 6A) = -2 \rightarrow A - 9 + 6A = -2 \rightarrow 7A - 9 = -2 \rightarrow 7A = 7 \rightarrow A = 1 \][/tex]
For [tex]\(B\)[/tex]:
[tex]\[ B = 2 - A = 2 - 1 = 1 \][/tex]
For [tex]\(C\)[/tex]:
[tex]\[ C = 9 - 6A = 9 - 6(1) = 3 \][/tex]
Thus, the partial fractions decomposition is:
[tex]\[ \frac{2x^2 + 3x - 6}{(x - 3)(x^2 + 3x + 3)} = \frac{1}{x - 3} + \frac{x + 3}{x^2 + 3x + 3} \][/tex]
[tex]\[ \frac{2x^2 + 3x - 6}{x^3 - 6x - 9} \][/tex]
we start by factoring the denominator.
First, let's factor [tex]\(x^3 - 6x - 9\)[/tex]. We look for a rational root using the Rational Root Theorem. The possible rational roots for [tex]\(x^3 - 6x - 9 = 0\)[/tex] are [tex]\(\pm 1, \pm 3, \pm 9\)[/tex].
Testing these values:
- For [tex]\(x = 1\)[/tex]:
[tex]\[ 1^3 - 6(1) - 9 = 1 - 6 - 9 = -14 \neq 0 \][/tex]
- For [tex]\(x = -1\)[/tex]:
[tex]\[ (-1)^3 - 6(-1) - 9 = -1 + 6 - 9 = -4 \neq 0 \][/tex]
- For [tex]\(x = 3\)[/tex]:
[tex]\[ 3^3 - 6(3) - 9 = 27 - 18 - 9 = 0 \][/tex]
So [tex]\(x = 3\)[/tex] is a root.
Therefore, we can divide [tex]\(x^3 - 6x - 9\)[/tex] by [tex]\(x - 3\)[/tex]:
Using synthetic division for [tex]\((x^3 - 6x - 9) \div (x - 3)\)[/tex]:
[tex]\[ \begin{array}{r|rrrr} 3 & 1 & 0 & -6 & -9 \\ & & 3 & 9 & 9 \\ \hline & 1 & 3 & 3 & 0 \\ \end{array} \][/tex]
This shows:
[tex]\[ x^3 - 6x - 9 = (x - 3)(x^2 + 3x + 3) \][/tex]
So now the expression is:
[tex]\[ \frac{2x^2 + 3x - 6}{(x - 3)(x^2 + 3x + 3)} \][/tex]
To decompose it into partial fractions, we assume:
[tex]\[ \frac{2x^2 + 3x - 6}{(x - 3)(x^2 + 3x + 3)} = \frac{A}{x - 3} + \frac{Bx + C}{x^2 + 3x + 3} \][/tex]
Multiplying both sides by [tex]\((x - 3)(x^2 + 3x + 3)\)[/tex] to clear the denominators, we get:
[tex]\[ 2x^2 + 3x - 6 = A(x^2 + 3x + 3) + (Bx + C)(x - 3) \][/tex]
Expanding and combining like terms:
[tex]\[ 2x^2 + 3x - 6 = A(x^2 + 3x + 3) + Bx^2 - 3Bx + Cx - 3C \][/tex]
[tex]\[= Ax^2 + 3Ax + 3A + Bx^2 - 3Bx + Cx - 3C\][/tex]
[tex]\[= (A + B)x^2 + (3A - 3B + C)x + (3A - 3C)\][/tex]
Equating coefficients of corresponding powers of [tex]\(x\)[/tex]:
1. For [tex]\(x^2\)[/tex]:
[tex]\[ A + B = 2 \][/tex]
2. For [tex]\(x^1\)[/tex]:
[tex]\[ 3A - 3B + C = 3 \][/tex]
3. For the constant term:
[tex]\[ 3A - 3C = -6 \][/tex]
Solving this system of equations:
From [tex]\(3A - 3C = -6 \rightarrow A - C = -2\)[/tex]
From [tex]\(A + B = 2\)[/tex]
[tex]\[ B = 2 - A \][/tex]
Substituting [tex]\(B\)[/tex] in [tex]\(3A - 3(2 - A) + C = 3 \rightarrow 3A - 6 + 3A + C = 3 \rightarrow 6A + C - 6 = 3 \rightarrow 6A + C = 9 \rightarrow C = 9 - 6A\)[/tex]
So now we have:
[tex]\[ A - C = -2 \rightarrow A - (9 - 6A) = -2 \rightarrow A - 9 + 6A = -2 \rightarrow 7A - 9 = -2 \rightarrow 7A = 7 \rightarrow A = 1 \][/tex]
For [tex]\(B\)[/tex]:
[tex]\[ B = 2 - A = 2 - 1 = 1 \][/tex]
For [tex]\(C\)[/tex]:
[tex]\[ C = 9 - 6A = 9 - 6(1) = 3 \][/tex]
Thus, the partial fractions decomposition is:
[tex]\[ \frac{2x^2 + 3x - 6}{(x - 3)(x^2 + 3x + 3)} = \frac{1}{x - 3} + \frac{x + 3}{x^2 + 3x + 3} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is your go-to source for dependable answers. Thank you for visiting, and we hope to assist you again.