IDNLearn.com helps you find the answers you need quickly and efficiently. Join our interactive Q&A platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
To determine the average rate of the reaction over the first 580 seconds, we need to follow these steps:
1. Identify the initial concentration and the concentration at 580 seconds from the table.
- At time [tex]\( t = 0 \)[/tex] seconds, the concentration is [tex]\( 1.8 \)[/tex] M.
- At time [tex]\( t = 580 \)[/tex] seconds, the concentration is [tex]\( 0.6 \)[/tex] M.
2. Calculate the change in concentration ([tex]\( \Delta [A] \)[/tex]):
[tex]\[ \Delta [A] = \text{Initial concentration} - \text{Concentration at 580 s} = 1.8 \, \text{M} - 0.6 \, \text{M} = 1.2 \, \text{M} \][/tex]
3. Determine the time interval ([tex]\( \Delta t \)[/tex]):
[tex]\[ \Delta t = 580 \, \text{seconds} - 0 \, \text{seconds} = 580 \, \text{seconds} \][/tex]
4. Calculate the average rate of the reaction using the formula for the rate of reaction:
[tex]\[ \text{Average rate} = \frac{\Delta [A]}{\Delta t} \][/tex]
Substituting the values we have:
[tex]\[ \text{Average rate} = \frac{1.2 \, \text{M}}{580 \, \text{seconds}} = 0.00206896551724138 \, \text{M/s} \][/tex]
5. Convert this value into scientific notation to match the given options:
[tex]\[ 0.00206896551724138 \, \text{M/s} \approx 2.069 \times 10^{-3} \, \text{M/s} \][/tex]
From the provided answer choices:
- [tex]\( 1.6 \times 10^{-3} \)[/tex]
- [tex]\( 1.9 \times 10^{-3} \)[/tex]
- [tex]\( 2.0 \times 10^{-3} \)[/tex]
- [tex]\( 2.2 \times 10^{-3} \)[/tex]
The closest value to [tex]\( 2.069 \times 10^{-3} \)[/tex] M/s is [tex]\( 2.0 \times 10^{-3} \)[/tex] M/s. Therefore, the average rate of the reaction over the first 580 seconds is:
[tex]\[ \boxed{2.0 \times 10^{-3}} \][/tex]
1. Identify the initial concentration and the concentration at 580 seconds from the table.
- At time [tex]\( t = 0 \)[/tex] seconds, the concentration is [tex]\( 1.8 \)[/tex] M.
- At time [tex]\( t = 580 \)[/tex] seconds, the concentration is [tex]\( 0.6 \)[/tex] M.
2. Calculate the change in concentration ([tex]\( \Delta [A] \)[/tex]):
[tex]\[ \Delta [A] = \text{Initial concentration} - \text{Concentration at 580 s} = 1.8 \, \text{M} - 0.6 \, \text{M} = 1.2 \, \text{M} \][/tex]
3. Determine the time interval ([tex]\( \Delta t \)[/tex]):
[tex]\[ \Delta t = 580 \, \text{seconds} - 0 \, \text{seconds} = 580 \, \text{seconds} \][/tex]
4. Calculate the average rate of the reaction using the formula for the rate of reaction:
[tex]\[ \text{Average rate} = \frac{\Delta [A]}{\Delta t} \][/tex]
Substituting the values we have:
[tex]\[ \text{Average rate} = \frac{1.2 \, \text{M}}{580 \, \text{seconds}} = 0.00206896551724138 \, \text{M/s} \][/tex]
5. Convert this value into scientific notation to match the given options:
[tex]\[ 0.00206896551724138 \, \text{M/s} \approx 2.069 \times 10^{-3} \, \text{M/s} \][/tex]
From the provided answer choices:
- [tex]\( 1.6 \times 10^{-3} \)[/tex]
- [tex]\( 1.9 \times 10^{-3} \)[/tex]
- [tex]\( 2.0 \times 10^{-3} \)[/tex]
- [tex]\( 2.2 \times 10^{-3} \)[/tex]
The closest value to [tex]\( 2.069 \times 10^{-3} \)[/tex] M/s is [tex]\( 2.0 \times 10^{-3} \)[/tex] M/s. Therefore, the average rate of the reaction over the first 580 seconds is:
[tex]\[ \boxed{2.0 \times 10^{-3}} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.